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ABSTRACT

To create more useful storm surge and inundation forecast products, probabilistic elements are being

incorporated. To achieve the highest levels of confidence in these products, it is essential that as many sim-

ulations as possible are performed during the limited amount of time available. This paper develops

a framework by which probabilistic storm surge and inundation forecasts within the Curvilinear Hydrody-

namics in 3D (CH3D) Storm Surge Modeling System and the Southeastern Universities Research Associa-

tion Coastal Ocean Observing and Prediction Program’s forecasting systems are initiated with specific focus

on the application of these methods in a limited-resource environment. Ensemble sets are created by dividing

probability density functions (PDFs) of the National Hurricane Center model forecast error into bins, which

are then grouped into priority levels (PLs) such that each subsequent level relies on results computed earlier

and has an increasing confidence associated with it. The PDFs are then used to develop an ensemble of

analytic wind and pressure fields for use by storm surge and inundation models. Using this approach applied

with official National Hurricane Center (OFCL) forecast errors, an analysis of Hurricane Charley is per-

formed. After first validating the simulation of storm surge, a series of ensemble simulations are performed

representing the forecast errors for the 72-, 48-, 24-, and 12-h forecasts. Analysis of the aggregated products

shows that PL4 (27 members) is sufficient to resolve 90% of the inundation within the domain and appears to

represent the best balance between accuracy and timeliness of computed products for this case study. A 5-day

forecast using the PL4 set is shown to complete in 83 min, while the intermediate PL2 and PL3 products,

representing slightly less confidence, complete in 14 and 28 min, respectively.

1. Introduction

Hurricanes are one of the most damaging natural

hazards affecting the United States. In 2004, Hurricanes

Charley ($15 billion; U.S. dollars), Ivan ($14 billion),

and Jeanne ($6.9 billion) made landfall in Florida,

causing more than $35 billion in combined damages

(Blake et al. 2007). In 2005, Dennis and Wilma caused

additional damages to Florida while Katrina and Rita

caused catastrophic damage in Louisiana and Mississippi.

A major contributor to damage caused by hurricanes is

associated with storm surge and coastal inundation. These

processes not only damage buildings and critical infra-

structure but can cause drastic changes in the coastline and

the estuarine and coastal ecosystems.

To aid emergency managers in the mitigation and

response to hurricane storm surge and inundation, nu-

merous numerical models have been developed. The

principles behind these models range from the sim-

ple approach of estimating flooding from topographic

contours to the more accurate 2D/3D, time-varying,

processed-based models—such as the Advanced Circu-

lation Model (ADCIRC; Luettich et al. 1992), the
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Curvilinear Hydrodynamics in 3D Storm Surge Mod-

eling System (CH3D-SSMS; Sheng et al. 2006, 2010),

Eulerian–Lagrangian circulation (ELCIRC; Zhang

et al. 2004), and Sea, Lake and Overland Surges from

Hurricanes (SLOSH; Jelesnianski et al. 1992)—that

have been validated for the simulation of storm surge in

numerous water bodies around the world. Wave setup

can also play an important role in the overall surge

height; hence, inclusion of wave physics from a wave

model such as Simulating Waves Nearshore (SWAN;

Booij et al. 1999) or WAVEWATCH III (Tolman 2002)

may also be necessary. In addition, it has been shown that

one of the most important factors in the successful sim-

ulation of storm surge and inundation is a high-quality

wind field. For purposes of forecasting, one of the most

accurate dynamical hurricane models is the Geophysical

Fluid Dynamics Laboratory (GFDL; Bender et al. 2007)

model, as was proved during the active Atlantic hurricane

season of 2004, where GDFL was the most accurate

model for both track and intensity (Franklin 2005). Thus,

the computational resource requirements of the simula-

tion of surge and inundation can range widely from sec-

onds to days or even months depending on the simulation

length, domain size and resolution, types of processes

included, among others.

Once a model has been developed and sufficiently

validated for a particular coastal region, the inundation

risk of a coastal region can be communicated to emer-

gency managers in one of two methods. For the first

method, a set of hundreds or even thousands of hypo-

thetical or historical storms—for example, using the

joint probability method (JPM) or the empirical simu-

lation technique (EST)—can be simulated and then

combined to form a surge atlas. This method is conve-

nient in that all computational work can be performed

prior to an event, thus greatly increasing the number of

possible scenarios simulated. However, because of the

wide range of possible storm tracks and intensities, fu-

ture storm events may not be similar to those in the atlas.

In addition, because the set of precomputed storms is

necessarily large, it is not possible to present either the

temporal characteristics of the systems response or the

pathways of flooding.

For the second method, the expected response can be

forecasted in real-time, using characteristics of the ac-

tual approaching storm. This method allows for the most

realistic representation of the storm itself and hence the

most realistic response. On-demand forecasting also

allows for the temporal characteristics and the path-

ways of flooding to be more easily communicated. Ex-

amples of forecasting systems for storm surge include

the Lake Pontchartrain Forecasting System (LPFS; avail-

able online at http://www.cct.lsu.edu/projects/LPFS), the

National Oceanographic Partnership Program (NOPP)

sponsored Real-Time Forecasting System of Winds, Waves

and Surge in Tropical Cyclones Project, the Chesapeake

Bay Inundation Prediction System (CIPS; available on-

line at http://cbos.org/Home/chesapeake-bay-inundation-

prediction-system-cips), the North Carolina State University

Coastal Marine Environment Prediction System (CMEPS)

(Pietrafesa et al. 2002), the National Oceanic and At-

mospheric Administration (NOAA) SLOSH Forecast-

ing System (available online at http://www.nhc.noaa.gov/

HAW2/english/surge/slosh.shtml), and the modeling sys-

tem tested in this study: the CH3D-SSMS Forecasting

System (available online at http://ch3d-ssms.coastal.ufl.

edu).

To enable more useful interpretation of the response

and understanding of forecast uncertainty (Safford et al.

2006), probabilistic elements can be introduced into

storm surge forecasting using, for example, atmospheric

forcing derived from historical National Hurricane Cen-

ter (NHC) track guidance error. However, depending on

the complexity of the models used, the number of simu-

lations to be performed can be significantly limited be-

cause of the timeliness of the approaching storm. In either

of the two methods mentioned earlier, various models

and scenarios can be implemented and synthesized. How-

ever, from the emergency manager’s perspective, for

a specific storm, a single response product that combines

relevant information is desired. During an impending

event, there is not enough time, nor do emergency man-

agers necessarily have the required skills, to synthesize

the possible different responses of multiple surge and

inundation models coupled with multiple atmospheric/

wave/or other models. Thus, methods used to determine

which models and scenarios are to be performed must be

developed in a way such that the resulting system re-

sponse can be aggregated in a statistically sound manner.

The demand for these types of products is evidenced, for

example, in how the NHC is now providing a new sin-

gle probabilistic forecast surge and inundation product

(available online at http://www.weather.gov/mdl/psurge)

created using SLOSH based on a historical analysis of

their historical forecast errors.

To achieve the highest levels of confidence in the

probabilistic storm surge and inundation forecast prod-

ucts, it is essential that as many simulations are per-

formed as possible during the limited amount time before

landfall. Currently, NHC forecast guidance extends out

5 days with errors increasing significantly after 3 days.

Since evacuation clearance times (time required to evac-

uate prior to prelandfall hazards) for densely populated or

isolated coastal counties—for example, Miami-Dade

(28.4 h) or Monroe County (Key West) (35.8 h), Florida

(SFRPC 2006)—may require as much as 1–2 days’ public
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notice for the most effective evacuation orders, a signifi-

cant amount of computational work must be performed

within a very short time frame. Even within the federal

government, there are limited resources available to

perform these simulations. This issue of how to best

balance the need for better probabilistic surge products

with limited computational resources is one issue ad-

dressed by the Southeastern Universities Research Asso-

ciation Coastal Ocean Observing and Prediction (SURA

SCOOP) program (Bogden et al. 2007).

The SURA SCOOP program (available online at

http://scoop.sura.org) is a multi-institution collaboration

to prototype transformational information technology

focused on the challenges of predicting coastal hazards.

The SCOOP mission is to prototype a distributed net-

work of shared resources that will broaden access to

the requisite data, models, computational resources, and

other key components of a comprehensive real-time

environmental prediction system. Many of the primary

data sources and modeling capabilities already exist in

the information silos of operational agencies, private

enterprise, and research institutions. Data from these

systems are increasingly available because of the adop-

tion of community standards from organizations such as

the World Wide Web Consortium (W3C; available online

at http://www.w3.org) and the Open Geospatial Consor-

tium, Inc. (available online at http://www.opengeospatial.

org). The SCOOP vision is to leverage and integrate the

disparate data sources in an information architecture that

enables transformational science and provides innovative

science products. Examples of some of the surge and wave

products used within the SCOOP program are shown in

Table 1.

This paper begins to develop the framework by which

probabilistic storm surge and inundation forecasts within

the CH3D-SSMS Forecasting System, as well as within

the larger SCOOP system, are initiated with specific focus

on the application of these methods in a limited-resource

environment. The specific modeling system and ensemble

methods presented herein represent only one possible in-

stantiation of the framework. Using the basic methodol-

ogy presented, alternative models and ensemble methods

can be employed. An example of this are the other

models used within SCOOP (e.g., ELCIRC, ADCIRC,

and WW3), which are currently using the ensemble pa-

rameters discussed herein. Background on how prob-

abilistic ensembles are created within the SCOOP

program is presented in section 2, followed by how these

methods are optimized for a limited-resource environ-

ment in section 3. Implications for how this priority

system affects forecast surge and inundation products

for Hurricane Charley is presented in section 4. Related

efforts focusing on individual aspects of the forecasting

techniques and methods to improve the quality of simu-

lated parameters are briefly described in section 5.

Lastly, a summary and conclusions are presented in

section 6.

2. Ensemble generation

There are many different methods by which an en-

semble of storm surge and inundation can be created,

such as ensembles of processes/coefficients, models, and

boundary and initial conditions. All of these methods

work reasonably well for hindcasting to help learn about

the system/processes being studied as well as to deter-

mine the optimal use of modeling systems. However, for

forecasting, errors in boundary and initial conditions can

sufficiently muddle simulated parameters so that discern-

ing meaningful results from some of these methods can be

difficult. One of the most important conditions for suc-

cessful simulation of surge and inundation is a correctly

forecasted atmospheric state; hence, this state is typi-

cally the ensemble parameter and is the subject of this

study.

Ideally, the generation of an ensemble of forecasted

atmospheric state would be created by using high-quality,

process-based hurricane models and known uncertainties

TABLE 1. Computational resource requirements of some of the models used within SURA SCOOP program.

Model

Processes

simulated Emphasis Domain

Wall clock time

(5-day forecast)

CH3D Surge/inundation High-resolution local Charlotte Harbor, FL 15 min/1 processor

Tampa Bay, FL 30 min/1 processor

Northern Gulf of Mexico 1 h/1 processor

East coast of FL 4.5 h/1 processor

ELCIRC Surge/inundation High-resolution local Chesapeake Bay, VA 30 min/6 processors

Mid-Atlantic Bight 1 h/6 processors

ADCIRC Surge /Inundation Low-resolution regional Northwest Atlantic Ocean and

the Gulf of Mexico

1 h/8 processors

WW3 Waves Low-resolution regional Northwest Atlantic Ocean and

the Gulf of Mexico

1 h/64 processors
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of the prior state. While the methods presented here will

also work for such an approach, at present the compu-

tational resources demands of the atmospheric models

(hours on multiprocessor systems) coupled with the

demands of the surge models make this approach gen-

erally impractical for all but a very small ensemble set.

Hence, rather than using process-based hurricane

models, a simple synthetic/analytic wind and pressure

field is used. This method has the advantage of being

very computationally efficient (less than a minute on

a single processor), thus enabling the creation of large

ensemble sets easily. While simplistic in that this method

relies only on a few parameters (e.g., position, minimum

pressure, radius of maximum wind speed), it is widely

used and recognized to work reasonable well (e.g.,

Hubbert and McInnes 1999; Moon et al. 2003; Madsen

and Jakobsen 2004; Peng et al. 2004, 2006; Wolf and

Flather 2005; Shen et al. 2006c,b,a; Sheng et al. 2006).

An example of how the generation of the analytic wind

and pressure fields fit into the CH3D-SSMS component

of the SURA SCOOP program is shown in Fig. 1.

As the primary purpose for creating the ensemble of

atmospheric state is for the forecast of storm surge and

inundation, it is the error of historical forecasted states

that is used to generate the ensemble. Forecasted pa-

rameters (e.g., position, translational velocity, minimum

pressure, and maximum wind speed, as available) are

compared with ‘‘best track’’ datasets to determine errors

and probabilities that are then used to build an ensemble

of forecasted atmospheric state. After which, a corre-

sponding ensemble of storm surge and inundation can

be computed. Tropical cyclone model [official National

Hurricane Center (OFCL), interpolated official forecast

(OFCI), GFDL, Statistical Hurricane Intensity Predic-

tion Scheme (SHIPS), etc.] forecast track and intensity

data are obtained from the Automated Tropical Cyclone

FIG. 1. Work flow for the generation of analytic wind products and operation of CH3D-SSMS within the SURA SCOOP

forecasting system.
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Forecast (ATCF) file/‘‘deck’’ data. ATCF data have been

available to the general public near-real time since the

2003 hurricane season and is updated within six minutes

of an active ATCF update (Stewart 2010). The ATCF

data published by the NHC are formally used as part of

the Automated Tropical Cyclone Forecasting System

currently in operation at the Naval Research Laboratory

in Monterey, California. This system consists of software

designed to automate and optimize the tropical cyclone

forecasting process at operational U.S. Department of

Defense and National Weather Service tropical cyclone

warning centers (Sampson and Schrader 2000). Official

historical track and intensity data are obtained from the

NHC Atlantic basin hurricane database (HURDAT).

The HURDAT is the best-track dataset, containing the

‘‘best’’ track and intensity estimates of tropical cyclones

as determined in a postanalysis of all available data for

the North Atlantic. Originally developed by Jarvinen

et al. (1984), the database is constantly being improved

(e.g., Landsea et al. 2004) as well as updated with

information from the latest hurricane season. Data in the

HURDAT database include position, minimum pressure,

and maximum wind speed—all of which are reported at

the same 6-h intervals: 0000, 0600, 1200, and 1800 UTC

(coordinated universal time).

Forecast errors for minimum pressure and maximum

wind speed are determined by direct comparison of

forecasted value and best-track value at a specific fore-

cast hour (e.g., 12, 24, 48, 72 h). As such, this method

results in smaller errors for the 12-h forecast and larger

errors for the 72-h forecast. Position error is determined

in a similar manner, except that the distance and bearing

error are calculated and then converted into along-track

(AT) and cross-track (CT) errors using the best-track

bearing. As positions are recorded in latitude and longi-

tude (a spherical coordinate system), all distance and

bearing calculations are performed using ‘‘Great Circle’’–

type calculations. For this study, the PROJ.4 Carto-

graphic Projections Library (available online at http://

trac.osgeo.org/proj/) was used. To reduce the effects of

FIG. 2. Empirically derived PDFs for (left) CT and (right) AT error of the NHC’s Atlantic OFCL forecast during

years 2004–06.

TABLE 2. CT and AT errors for the NHC’s Atlantic OFCL forecast during years 2004–06, where n is the sample size, m is the mean, s is

the standard deviation, and JBCR is the critical JB value at the 0.005 significance level. JB exceeds JBCR at all forecast times, thus indicating

that neither the CT nor AT errors can be considered normally distributed.

Component Forecast time (h) n m (km) s (km) Skewness Kurtosis JB JBCR

CT 12 1220 26.46 49.2 20.164 5.21 254 12.1

24 1175 215.1 83.7 20.477 5.27 297 12.1

48 1055 222.4 150 20.225 4.02 54.9 12.3

72 939 225.0 233 20.118 5.41 229 12.4

AT 12 1220 213.6 57.7 20.862 5.23 405 12.1

24 1175 222.7 98.7 20.710 4.24 174 12.1

48 1055 233.8 190 20.752 4.73 231 12.3

72 939 283.8 301 20.911 5.41 357 12.4
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overly active or inactive tropical seasons, multiple years

of forecast errors were combined.

Probability density functions (PDFs) for forecast

model errors were then developed using kernel density

estimation (e.g., Silverman 1986)—also referred to as

the Parzen window method (Parzen 1962). A Gaussian

kernel was used with m 5 0 and s2 5 1. Bandwidths were

selected using Scott (1992) with a factor of 1.06. An

example of the PDFs generated for CT and AT errors

for the OFCL forecast track during years 2004–06 is

shown in Fig. 2. CT and AT were uncorrelated (r , 0.1)

for all forecast times. Additionally, a Jarque–Bera (JB)

test (Bera and Jarque 1980, 1981) was performed on

both the CT and AT errors. This test, a goodness-of-fit

measure of departure from normality based on the sam-

ple kurtosis and skewness, indicated that neither error

can be considered normally distributed (Table 2).

With PDFs for CT, AT, minimum pressure, and

maximum wind speed errors developed, a probabilistic

ensemble set can be created for future forecasted hur-

ricanes. For purposes of the presented method, ensem-

bles will be created only using the CT and AT errors.

Furthermore, the CT was used to form a probabilistic

‘‘rotation angle,’’ which is based on a mean translational

velocity during the measurement sampling period in

which the PDFs were created (e.g., 12.66 kt for the pe-

riod from 2004 to 2006). The resulting rotation angle

PDF is divided into equal-area bins, the center of each

then represents rotation angles of equal probability,

which when combined with other forecasted parameters

(e.g., minimum pressure) yields an ensemble set of fore-

cast tracks. The forecasted tracks are then converted

into analytic wind and pressure fields using a simple

parametric model (Holland 1980). The wind and pres-

sure fields are then supplied to the storm surge models.

As each track represents an equal probability of occur-

ring, the simulated storm surge for each member of the

ensemble set can be aggregated into a single forecast

product, such as the probability of the water level or

flooding exceeding a critical value. This initial method-

ological framework includes only errors associated with

CT and AT forecasts. However, the eventual goal is to

use as many forecasts errors as possible, which is cur-

rently being done with NHC probabilistic products that

use forecast errors associated with hurricane track, wind

speed, and an estimate of storm size (DeMaria et al.

2009).

Although the OFCL track is generally the most ac-

curate, the OFCI track is used for forecasting in the

SURA SCOOP program because of its timeliness (Fig. 3).

Forecasted minimum pressure needed for the analytic

formulation (OFCL/OFCI do not contain forecasted

pressure) is obtained from the GFDL forecast. As

GFDL output is typically not available until six-plus

hours after the cycle time, the previous cycle’s minimum

pressure is used. Although some accuracy is lost in this

approach, the resulting simulated surge is obtained

rapidly with analytic wind and pressure fields generated

1–2 h after the cycle time. More accurate analytic fields

can be generated using OFCL and the current cycle

GFDL, but the fields cannot be generated until 6–8 h

after cycle time. Coupled with the simulation time of the

FIG. 3. Timeliness of various hurricane forecast models during

the 2005–06 Atlantic hurricane seasons. Mean timeliness for the

period is shown with the larger solid circle.
FIG. 4. The division of a Gaussian PDF into 3, 9, and 27 equal-

area bins, illustrating how the midpoint of bins 1/3, 2/9, and 5/27 are

all located at the same location on the PDF. Bins are numbered

consecutively from left to right.
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storm surge models, the later approach can result in

simulated inundation not being available until after its

effective time of usefulness. Another potential issue

when combining data from different forecast models

(e.g., OFCL track with GFDL minimum pressure) is

the inconsistency arising from the different forecasted

tracks. For example, the OFCL track may have the

storm making landfall later than the GFDL model, in

which case the GFDL minimum pressure will be slightly

higher (the storm will be less intense) than expected.

However, it is expected that the higher amount of un-

certainty present within the pressure forecasts themselves

currently would overwhelm these potential inconsisten-

cies. In future applications, the NHC maximum wind

forecast could be used as input to a pressure–wind re-

lationship to obtain a more consistent minimum pressure

estimate.

3. Prioritization strategies

As mentioned previously, ensemble sets are created

by equally dividing PDFs into bins that represent en-

semble members that have an equal probability of oc-

curring. In a limited-resource environment, this can be

done by simply specifying the number of bins equal to

the number of resources available or by selecting some

minimum number of simulations to perform for the

desired level of confidence in the simulated parameters

TABLE 3. Description of the 1-, 3-, 9-, 27-, or 81-track ensemble sets for n 5 3. Members shown in parenthesis have already been computed

as part of a previous PL. CL is confidence level and is undefined when there is only one member.

PL

No. of additional

members Members simulated

Total No. of

members Bin area CL (%)

1-member ensemble

1 1 1 1 1.000 Undefined

3-member ensemble

1 1 2 1 1.000 Undefined

2 2 1, (2), 3 3 0.333 66.6

9-member ensemble

1 1 5 1 1.000 Undefined

2 2 2, (5), 8 3 0.333 66.6

3 6 1, (2), 3, 4, (5), 6, 7, (8), 9 9 0.111 88.9

27-member ensemble

1 1 14 1 1.000 Undefined

2 2 5, (14), 23 3 0.333 66.6

3 6 2, (5), 8, 11, (14), 17, 20, (23), 26 9 0.111 88.9

4 18 1, (2), 3, 4, (5), 6, 7, (8), 9, 10, (11), 12, 13, (14), 15, 16,

(17), 18, 19, (20), 21, 22, (23), 24, 25, (26), 27

27 0.037 96.3

81-member ensemble

1 1 41 1 1.000 Undefined

2 2 14, (41), 68 3 0.333 66.6

3 6 5, (14), 23, 32, (41), 50, 59, (68), 77 9 0.111 88.9

4 18 2, (5), 8, 11, (14), 17, 20, (23), 26, 29, (32), 35, 38, (41),

44, 47, (50), 53, 56, (59), 62, 65, (68), 71, 74, (77), 80

27 0.037 96.3

5 54 1, (2), 3, 4, (5), 6, 7, (8), 9, 10, (11), 12, 13, (14), 15, 16, (17),

18, 19, (20), 21, 22, (23), 24, 25, (26), 27, 28, (29), 30, 31,

(32), 33, 34, (35), 36, 37, (38), 39, 40, (41), 42, 43, (44), 45,

46, (47), 48, 49, (50), 51, 52, (53), 54, 55, (56), 57, 58, (59),

60, 61, (62), 63, 64, (65), 66, 67, (68), 69, 70, (71), 72, 73,

(74), 75, 76, (77), 78, 79, (80), 81

81 0.012 98.8

TABLE 4. Description of an arbitrary X-member ensemble set for a given priority P, where X is a power of an odd valued n. For the

examples presented herein, n 5 3 and X 5 1, 3, 9, 27, and 81.

No. of additional

members Members simulated

Total No. of

members Bin area CL

1 (P 5 1) ( j 2 1) 3 X/n(P21) 1 [X/n(P21) 1 1]/2

where j 5 1, n(P21)
n(P21) 1/n(P21) Undefined (P 5 1)

n(P21) 2 n(P22) (P . 1) [1 2 1/n(P21)] (P . 1)
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and waiting for all the simulations to complete. Un-

fortunately, these approaches can be problematic, in

that the number of resources may change or resources

may have differing performance characteristics that can

require the use of complex scheduling algorithms. Ad-

ditionally, for a large ensemble set, it may take a con-

siderable amount of wall clock time for the simulations

to complete with no intermediate products available

until then. And if even one simulation fails to complete,

then the statistical basis of the aggregated products be-

comes questionable and no aggregated product at all can

be successfully derived. However, through careful di-

vision of the PDFs, an ensemble set can be created to

avoid these issues.

Rather than dividing the PDFs into an arbitrary number

of bins, the PDFs are divided into X 5 nP21 bins, where

X represents the largest ensemble set desired with n

being an odd number greater than 1 and P being a

‘‘priority level’’ (PL). For example, for n 5 3 and P 5 4,

27 equally spaced bins would be created. As a result of

dividing the PDFs in this manner, locations of the mid-

point of the bins for P are composed of the midpoints of

the bins for (P 2 1) plus an additional n(P21) 2 n(P22)

locations (Fig. 4). For purposes of performing ensemble

simulations, if the individual simulations are performed

in a specific order from the PL of 1 to P, then the in-

termediate simulations can be aggregated to generate

a statistically meaningful product. Additionally, as each

PL has an associated confidence, as many simulations

can be performed as possible in the limited-resource

environment until the desired confidence has been

reached or the available wall clock or central processing

unit (CPU) times have been exhausted. An example of

the simulation ordering of the individual ensemble

members for specific cases is shown in Table 3, with

a more general case presented in Table 4.

For the simulations presented herein, a PDF of rota-

tion angle is used to generate the ensemble members.

An example of the ensemble tracks for an 81-member

set for a hypothetical hurricane forecast track is shown

in Fig. 5. Each track has a 1/81 chance of occurring, with

many of the tracks concentrated toward the middle where

the hurricane has the highest probability of traveling as

determined by the empirically derived PDFs for rotation

angle.

4. Implications of prioritization on simulated
inundation

To understand how the prioritization strategies de-

scribed herein affect simulated inundation, a set of en-

semble tracks was created using one possible example of

the generic method discussed in section 2 for Hurricane

Charley (2004) and then simulated using CH3D-SSMS.

Hurricane Charley made landfall along the southwest-

ern coast of Florida as a category 4 storm (150 mph)

(Fig. 6). After first striking Captiva Island, the storm

continued along and caused significant wind and flood-

ing damage in Punta Gorda and Port Charlotte. Initially

expected to make landfall slightly to the north in Tampa

Bay, the storm’s sudden track change caught many in the

Charlotte Harbor region of Florida unprepared. As the

storm continued on, it blew through Orlando, exited

near Daytona Beach, and then made landfall again in

South Carolina. All told, the storm was responsible for

10 deaths and caused $14 billion in property damage,

making it the fourth costliest (through the 2006 season)

hurricane in U.S. history (Pasch et al. 2007; Blake et al.

2007).

The study area used for simulation is centered on the

Charlotte Harbor region (Fig. 7). The domain extends

50–60 km offshore, 105 km alongshore, and inshore to

the 5-m topographic contour. With these lateral bound-

aries defined, a boundary-fitted 141 3 159 cell grid system

was developed (Fig. 8). The minimum cell width is 40 m

and, including the offshore region, the average cell width

is 700 m. Topography data for the region were obtained

from the 1/3 arc-second (10 m) U.S. Geological Survey

(USGS) National Elevation Dataset (NED). Bathymetric

data for upper Charlotte Harbor was obtained from the

Southwest Florida Water Management District, while data

for the remainder of the domain was obtained from the

FIG. 5. The 81-track ensemble set based on empirical OFCL

forecast error for years 2004–06 for a hypothetical storm starting at

(0, 0) and traveling along x 5 0 at 12.66 kt (the mean translational

velocity during this period). Thick lines indicate the farthest

counterclockwise- and clockwise-rotated tracks for the 3-, 9-, 27-,

and 81-track ensemble sets.
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National Geophysical Data Center’s (NGDC) GEODAS

(Geophysical Data System) datasets. Vertically, bathyme-

try and topography are referenced to the North Amer-

ican Vertical Datum of 1988 (NAVD88). Horizontally,

the grid was developed using the High Precision Geo-

detic Network (HPGN) universal transverse mercator

(UTM) coordinate system.

The simulations of storm surge and inundation were

performed using CH3D-SSMS, an integrated storm surge

modeling system developed at the University of Florida

(UF). The modeling system includes the high-resolution

coastal surge model CH3D (available online at http://

ch3d.coastal.ufl.edu), which is coupled to SWAN and

large-scale surge [e.g., ADCIRC or Unstructured CH3D

(UnCH3D)] and wave (e.g., WAVEWATCH III or

SWAN) models. The foundation of CH3D-SSMS is the

CH3D model developed by Sheng (1987, 1990). CH3D has

been extensively applied to and validated with data from

various coastal, estuarine, and lake waters throughout the

United States. In addition, CH3D is the cornerstone of the

Chesapeake Bay model used by the U.S. Environmental

Protection Agency (EPA) and surrounding states to man-

age the bay’s water quality and resources. Since 1986,

CH3D has been significantly advanced by UF researchers

and applied to almost all major estuaries and lakes in

Florida (e.g., Arnold et al. 2005; Sheng et al. 2008; Sheng

and Kim 2009), including Sarasota, Tampa, Florida and

Biscayne Bays, Charlotte Harbor, Indian River Lagoon,

FIG. 6. The track of Hurricane Charley (2004; Pasch et al. 2007). Landfall in Florida occurred on 13 Aug 2004

at 1945 UTC.

FIG. 7. The Charlotte Harbor study area.
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and St. Johns River. For simulation of storm surge and

coastal inundation, CH3D has been enhanced to include

flooding-and-drying; current–wave interaction (current–

wave bottom boundary layer, wave-breaking-induced ra-

diation stress, and wave drag); variable bottom roughness,

depending on the variable land use types; and the ability

to operate with various realistic or analytic wind and

pressure fields.

CH3D-SSMS has been used to simulate many of the

hurricanes during 2003–05, including Isabel (Sheng et al.

2010), Charley, Frances, Ivan, Dennis, Katrina, and Wilma.

Working with Pinellas County and the Federal Emergency

Management Agency (FEMA), UF (Sheng and Alymov

2002) used CH3D-SSMS to produce a flood insurance rate

map (FIRM) for Pinellas County, Florida, and compare it

with the FEMA FIRM. CH3D-SSMS was also used to

produce a surge atlas that was compared with the SLOSH

surge atlas. Since 2004, CH3D-SSMS has been advanced to

provide a real-time forecast of analytic hurricane wind and

pressure, storm surge, wave, and coastal inundation for

various parts of Florida and Gulf of Mexico coasts during

hurricane seasons (Sheng et al. 2006; Davis et al. 2006).

Prior to performing the ensemble simulations, a base

simulation is performed to ensure CH3D-SSMS simulates

water levels reasonably well. Using the 2D version of

CH3D-SSMS, the base simulation begins at 2000 UTC

10 August 2004, is 4 days in length, and uses a 60-s time

step. The simulation is forced by analytic storm wind

and pressure fields created by a simple parametric

model (Holland 1980) as well as tides. Best-track and

pressure data used for creating the storm were ob-

tained from the NHC Tropical Cyclone Report (Pasch

et al. 2007). Radius of maximum wind data was esti-

mated from the experimental NOAA Hurricane Re-

search Division (HRD) H*Wind ‘‘snapshot’’ products

(Powell et al. 1998). Tidal forcing was achieved using

tidal constituents along all open boundaries obtained

from the ADCIRC EC2001 tidal database (Mukai et al.

2002). As these constituents are referenced to mean

water level (MWL), conversion to NAVD88 was per-

formed by spatially interpolating MWL–NAVD88 dif-

ferences from available local NOAA benchmark sheets.

Lastly, bottom friction for the simulation was calculated

using the Manning’s formulation and a spatially constant

coefficient of 0.025.

Observed water level available for comparison with the

base simulation are available at four sites in the region:

Fort Meyers (NOAA 8725520), Big Carlos Pass [Coastal

FIG. 8. The boundary-fitted curvilinear grid system (141 3 159 cells) used for simulation.
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Ocean Monitoring and Prediction System (COMPS)

1408A552], Matanzas Pass [Florida Department of En-

vironmental Protection (FDEP) EB01], and Spring

Creek (FDEP EB02). The Fort Myers observation lo-

cation is located in the Caloosahatchee River, Big Car-

los Pass, at the entrance to Estero Bay, Matanzas Pass, in

the northern portion of Estero Bay and Spring Creek in

the southern portion.

Comparisons between simulated and observed water

level are shown in Fig. 9. Tides and peak surge are

reasonably well simulated using the ADCIRC tidal

constituents and the analytic wind model as bound-

ary forcing. Big Carlos Pass and Fort Myers slightly

FIG. 9. Comparisons between simulated and observed water level. Peak surge amplitude and phase differences

are (a) 24 cm and 235 min, (b) 214 cm and 210 min, (c) 11 cm and 24 min, and (d) 33 cm and 212 min. Positive

errors indicate overprediction and phase lag vs observed data.

TABLE 5. Overview of the ensemble simulations.

PL

No. of ensemble simulations per forecast length

(time before landfall)

(i) (ii) (iii) (iv)

72 h 48 h 24 h 12 h

1 1 1 1 1

2 3 3 3 3

3 9 9 9 9

4 27 27 27 27

5 81 81 81 81

6 243 243 243 243

7 729 729 729 729

8 2187 2187 2187 2187

9 6561 6561 6561 6561

JULY 2010 D A V I S E T A L . 2963



underpredict peak water level. As Big Carlos Pass is the

only site exposed directly to the Gulf of Mexico, un-

derprediction may be caused by wave setup effects,

which are not included in the simulation. Matanzas Pass

and Spring Creek, which are shielded from the Gulf by

simulates from barrier islands, overpredict the peaks.

This may be due to the poor bathymetric resolution

in Estero Bay. Fort Myers is more strongly under-

predicted than Big Carlos Pass; however, the phase error

is very small even though the peak water level at Fort

Myers occurs more than two hours after the other sites.

Since this time is long considering the physical scale of

the domain, the observed surge may have additional

precipitation and discharge components that are not

included in the simulation leading to underprediction.

As these base simulation comparisons indicate reason-

able simulation of peak surge, it is assumed that the

model is reasonably validated for the remaining en-

semble analyses, which are all based on maximum of

simulation (MOS) and maximum of ensemble (MOE)

for water level. A MOS represents the maximum simu-

lated water level at each computational grid point for

a single simulation. A MOE represents the maximum

simulated water level at each computational grid point

over all the MOSs. The MOE-type analysis thus rep-

resents the worst-case scenario and is typically what is

used by emergency managers for mitigation and plan-

ning.

FIG. 10. The PL4 ensemble of forecast tracks for Hurricane Charley (a) 72, (b) 48, (c) 24, and (d) 12 h before

landfall. Forecasts extend 24 h past time of landfall. The actual storm track is shown using the solid thick line.
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With the base simulation sufficiently validated, the

ensemble simulations of storm surge and inundation in

Charlotte Harbor are set up and performed. Ensembles

are based on the forecast error statistics for the OFCL

guidance between 2004 and 2006 and the generic

method described in section 2 for creating an ensemble

of tracks based on cross-track errors. Using n 5 3, an

ensemble set of storm characteristics was created for

each PL from 1 (1 member) to 9 (6561 members) for

each of the four forecast periods—(i) 72, (ii) 48, (iii) 24,

and (iv) 12 h—before landfall (Table 5). The range of

72–12 h was chosen because the quality of forecast

guidance diminishes rapidly for forecasts .72 h, and

there is limited usefulness to emergency managers for

forecast products ,12 h because of the short amount of

time available for wide-scale planning and evacuation.

An example of the PL4 ensemble track set is shown in

Fig. 10. The remaining hurricane characteristics (trans-

lational velocity, pressure drop, etc.) are based on the

best-track values used in the base simulation. Forcing

mechanisms and simulation parameters used are also

identical to the base simulation. It is noted that in a true

forecast setting, ensemble perturbations would be ap-

plied to forecasted parameters instead of the best track

as used in this example application. However, for pur-

poses of demonstrating the ensemble approach, a set of

results would be yielded that could not be compared

with observed values, thus making their interpretation

more difficult. In particular, because the track ensem-

bles are centered on the best track rather than a forecast

FIG. 11. Simulated water level MOE based on the PL9 ensemble set.
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track as would be necessary in a real-time application,

the results presented next on the number of ensemble

members needed to capture the true storm surge are

illustrative of a case where the track forecast is very

accurate. The effect of using track forecasts rather as the

baseline is a topic of future research, as will be described

in section 5.

With the hurricane characteristics defined for each

ensemble member of the four sets of simulations, the

entire collection of 26 244 simulations was performed at

the UF High Performance Computing Center. Using

this resource, a single 4-day simulation required 9.2 min

using a single processing element from an AMD dual-

core Opteron 275 processor running at 2.2 GHz.

Once completed, the simulated water levels for each

of the ensemble sets were aggregated together to gen-

erate products useful to emergency managers and to

determine the highest PL to use for forecasting. To be-

gin, the water levels for the entire PL9 ensemble set

were combined to form a MOE (Fig. 11). This analysis

shows that the peak surge (;2 m) is generated outside

of the southern entrance to Charlotte Harbor near Es-

tero Bay. This is to be expected, as the counterclockwise

rotation of the hurricane piles up water along the south

side of the track directly into the funnel-shaped southern

entrance to the harbor. Because the ensemble sets were

created through variation of the best track, as opposed

to forecast track, the variation in the MOE between the

72-h forecast and the 12-h forecast demonstrates the

effect of the declining spread of the forecast tracks during

this period. Comparing the inundation MOEs between

these two forecasts shows that a vast majority of the in-

undated area is within 0.1 m, thus indicating that if the

forecast track of a storm remains constant, then the en-

semble spread will not affect simulated inundation sig-

nificantly in the vicinity of the mean track (Fig. 12).

As the extent and magnitude of inundation are of

critical importance to emergency managers, the spatial

FIG. 12. The difference between the simulated inundation calculated using the 72-h forecast

and the 12-h forecast using the PL9 ensemble set.
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areas and volumes of inundated areas within the domain

were extracted from water level MOEs for each forecast

time and PL (Fig. 13) and then normalized using the

PL9 ensemble set. Although inundation occurs over

a wide area, the average depth is ;0.73 m. Approxi-

mately 90% of the inundated area and volume is

reached by the time the PL4 set has completed. For PL1,

only 45%–60% of the final area and volume is achieved.

A slight improvement in these values can be seen when

progressing from PL1 to PL2. As expected, this im-

provement is more pronounced in the 12-h forecast,

where more of the ensemble tracks intersect the do-

main. The largest improvement is seen progressing

from the PL2 to PL3, followed by the next largest

improvement between PL3 and PL4. While the in-

undated areas and volumes continue to approach the

reference values, the marginal improvement becomes

smaller. These simulated inundation patterns seem to

indicate that the PL4 ensemble set would represent

a reasonable minimum upper bound to the number of

ensemble simulations to perform. This can be further

illustrated by comparing the PL4 and PL9 water level

MOE; the largest difference is ;0.2 m, with a majority

of the differences in inundated area amounting to less

than 0.1 m (Fig. 14).

Since the ensemble sets were developed using a

probabilistic-based approach, it is possible to develop

simulated water level ‘‘probability of exceedance’’

FIG. 13. Relative area and volume of maximum inundation as a function of PL (n 5 3). Areas and volumes are only

calculated in inundated land regions within the domain where the total depth is greater than 1 ft.

JULY 2010 D A V I S E T A L . 2967



(POE)-type products. Using the locations of the four

observation sites mentioned previously, the POEs were

calculated for two cases: 0.5 m (slightly above expected

tidal amplitude) and 0.75 m (more significantly above

the expected tidal amplitude) NAVD88. For the 0.5-m

case, all four sites have a POE 5 1 for PL1; however,

the probability at each declines with the higher PLs

(Fig. 15). Although each site’s POE at PL9 is only ;0.33

for the 72-h forecast, they do increase to ;0.6 for the 12-h

forecast, which is another indicator of the effect of the

ensemble spread. It is also noted that the POE curve

flattens out after PL4. Similar patterns are shown for the

0.75-m case, with the exception that the overall POE

values are lower (Fig. 16). Again, the largest POE in-

creases occur between PL1 and PL3, and the curves flat-

ten off at PL4. Spring Creek has the highest POE, which is

somewhat expected, as this location had the highest water

level from the base simulation. Again, PL4 appears to be

a good minimum upper bound for the number of en-

semble simulations to perform.

Looking at the Spring Creek location exclusively, the

POE for various water heights relative to NAVD88 can

be determined (Fig. 17). For all forecast periods, POE 5 1

for 0.25 m. The next highest POE is 0.5 m, which ranges

from 0.37 for the 72-h forecast to 0.55 for the 12-h

forecast. For water levels at or above 1.5 m, the POE is

FIG. 14. The difference between the simulated maximum inundation using the PL 4 ensemble set and the PL 9

ensemble set. Negative values indicate the maximum inundation using the PL 9 ensemble set is more extensive than

the PL 4 ensemble set.
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;0.1, indicating that within the confidence of a given

probability level, there was little chance of this high

a water level occurring. As with the previous products,

the POE curves flatten out after PL4. It is also noted that

although the probability of exceeding 0.75 m is rela-

tively low, the base simulation did produce a water level

that exceeded this value, thus illustrating a difficulty in

interpreting probabilistic results. Rather than focus-

ing on specific POE values, it becomes more useful to

look at values that are high relative to other areas. To

this end, a product illustrating the spatial extent of the

0.75 m POE is shown in Fig. 18. As with the regions

highlighted in ensemble MOE for having high water

levels, the regions with the highest POE 0.75 m occur in

the entrance to the southern portion of Charlotte Har-

bor near Estero Bay and in the upper reaches of Char-

lotte Harbor itself.

On the basis of the timeliness of the NHC forecast

products used to develop the ensembles and subse-

quently force the surge and inundation models (Fig. 3),

it is estimated that forecast surge products need to be

completed and ready for use by emergency managers

within 3 h of a total 6-h cycle. Factoring in other delays

(e.g., data transport and ensemble postprocessing times),

it is then assumed that all of the ensemble simulations

need to complete within two hours. Extrapolating the

FIG. 15. Probability of the water level MOE exceeding 0.5 m NAVD88.
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ensemble simulations computation time presented herein

to that of a typical forecast (5-day forecast 1 1-day model

spinup), the simulation time of a single ensemble member

TEM is expected to be 14 min [(9.2 min/4-day simula-

tion) 3 6-day simulation]. Assuming the number of en-

semble members to complete NEM is 27 (PL4) and the

number of processing elements NPE available is 5, it is

possible to complete this entire ensemble within only

TTOT 5 ØNEM/NPEe 3 TEM 5 84 min. Additionally, as-

suming the simulations are performed in the specified

order (Table 3), the intermediate PL1–PL3 products are

available within 14, 14, and 28 min, respectively (Table 6).

To optimize the computational resource environment, the

minimum number of processing elements required to

compute the ensemble is (NPE)min 5 ØNEM/bTTOT/TEMce,
where TTOT/TEM $ 1. For PL1, PL2, . . . , PL9, (NPE)min

would be 1, 1, 2, 4, 11, 31, 92, 274, and 821, respectively.

5. Related efforts

The storm surge modeling system, ensemble ap-

proaches, forecast implementation techniques, and anal-

ysis components used as part of this study will be expanded

upon in future publications. Topics to appear include 1)

A comparison of the relative importance of track error

with intensity error on the simulation of inundation.

FIG. 16. As in Fig. 15, but for 0.75.
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While forecast track error has improved greatly in re-

cent years, intensity error has not. Using forecast error

statistics collected of several different results, storm

surge simulations are being conducted to investigate

how the lack of progress in improving intensity is af-

fecting the forecasted surge in coastal regions. 2) En-

semble simulation of inundation using conditional

probabilities. The statistical methods presented herein

ignore the paths by which a storm takes. Using condi-

tional probabilities, the path can also be included. This

method is currently under investigation. 3) A real-world

case study using the prioritization methods described

herein for the SCOOP forecasting will be presented to

understand how such algorithms perform during a real

hurricane event.

6. Summary

To enable more useful interpretation of the response,

probabilistic elements have been introduced into storm

surge forecasting using, for example, atmospheric forc-

ing derived from historical NHC track guidance error.

To achieve the highest levels of confidence in the prob-

abilistic storm surge and inundation forecast products,

FIG. 17. Probability of water level MOE at Spring Creek exceeding 0.25, 0.50, 0.75, 1, and 1.5 m.
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it is essential that as many simulations are performed

as possible during the limited amount of time before

landfall. This paper has developed a framework by which

probabilistic storm surge and inundation forecasts within

the CH3D-SSMS Forecasting System as well as within

the larger Southeastern Universities Research Associ-

ation SCOOP system are initiated, with specific focus on

the application of these methods in a limited-resource

environment. Ensemble sets are created by equally di-

viding empirically derived PDFs of NHC model forecast

error into bins, which represent ensemble members that

have an equal probability of occurring. The bins are then

grouped into priority levels (PLs), such that each sub-

sequent level relies partially on results computed during

an earlier level and has an increasing confidence asso-

ciated with it. The PDFs are then used to develop an

ensemble of analytic wind and pressure fields for use by

storm surge and inundation models. Using this approach

applied with OFCL forecast errors, a case study is per-

formed using the landfall of Hurricane Charley (2004)

into the Charlotte Harbor region. After first validating

the simulation of storm surge using CH3D-SSMS, a se-

ries of ensemble simulations are performed representing

the 72-, 48-, 24-, and 12-h forecasts.

Analysis of the aggregated products for this case study

show that PL4 (27 ensemble members) is sufficient to

resolve 90% of the inundation within the domain and

appears to represent the best balance between accuracy

and timeliness of computed products. Assuming five

AMD Opteron 275 2.2-GHz processing elements are

available for simulation, it is expected that a 5-day fore-

cast using the PL4 set would take only 83 min to complete,

FIG. 18. The probability of the water level MOE exceeding 0.75 m.
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well within the 6-h forecast window of the NHC. The in-

termediate PL1–PL3 products, representing slightly less

confidence, would be available within only 14, 14, and

28 min, respectively.

Acknowledgments. This work was funded by the

Southeastern Universities Research Association Coastal

Ocean Observing and Prediction (SCOOP) Program

funded by the Office of Naval Research, Award N00014-

04-1-0721 and by NOAA Ocean Service, Award

NA04NOS4730254 and the University of Florida. The

authors also wish to acknowledge the University of

Florida High-Performance Computing Center (available

online at http://www.hpc.ufl.edu) for providing compu-

tational resources that contributed the results reported

within this paper.

REFERENCES

Arnold, W. S., G. L. Hitchcock, M. E. Frischer, R. Wanninkhof,

and Y. P. Sheng, 2005: Dispersal of an introduced larval

cohort in a coastal lagoon. Limnol. Oceanogr., 50, 587–

597.

Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok,

2007: The operational GFDL coupled hurricane–ocean pre-

diction system and summary of its performance. Mon. Wea.

Rev., 135, 3965–3989.

Bera, A. K., and C. M. Jarque, 1980: Efficient tests for normality,

homoscedasticity and serial independence of regression re-

siduals. Econ. Lett., 6, 255–259.

——, and ——, 1981: Efficient tests for normality, homoscedas-

ticity and serial independence of regression residuals: Monte

Carlo evidence. Econ. Lett., 7, 313–318.

Blake, E. S., E. N. Rappaport, and C. W. Landsea, 2007: The

deadliest, costliest, and most intense United States tropical cy-

clones from 1851 to 2006. NOAA Tech. Memo. NWS TPC-5,

45 pp.

Bogden, P., and Coauthors, 2007: Architecture of a community

infrastructure for predicting and analyzing coastal inundation.

Mar. Technol. Soc. J., 41, 53–61.

Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation

wave model for coastal regions: 1. Model description and vali-

dation. J. Geophys. Res., 104 (C4), 7649–7666.

Davis, J. R., V. A. Paramygin, A. Ganguly, R. J. Figueiredo, and

Y. P. Sheng, 2006: Simulation of storm surge using grid com-

puting. Estuarine and Coastal Modeling 2005, J. Spaulding, Ed.,

ASCE, 357–374.

DeMaria, M., J. A. Knaff, R. Knabb, C. Lauer, C. R. Sampson, and

R. T. DeMaria, 2009: A new method for estimating tropical cy-

clone wind speed probabilities. Wea. Forecasting, 24, 1573–1591.

Franklin, J. L., 2005: 2004 National Hurricane Center forecast veri-

fication report. National Hurricane Center/NOAA Rep., 46 pp.

[Available online at http://www.nhc.noaa.gov/verification/pdfs/

Verification_2004.pdf.]

Holland, G. J., 1980: An analytic model of the wind and pressure

profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.

Hubbert, G. D., and K. McInnes, 1999: A storm surge inundation

model for coastal planning and impact studies. J. Coastal Res.,

15, 168–185.

Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical

cyclone data tape for the North Atlantic Basin, 1886-1983:

Contents, limitations, and uses. NOAA Tech. Memo. NWS

NHC 22, 24 pp.

Jelesnianski, C. P., J. Chen, and W. A. Shaffer, 1992: SLOSH: Sea,

lake, and overland surges from hurricanes. NWS Rep. 48, 71 pp.

Landsea, C. W., and Coauthors, 2004: The Atlantic Hurricane

Database Reanalysis Project: Documentation for 1851–1910

alterations and additions to the HURDAT database. Hurri-

canes and Typhoons: Past, Present, and Future, R. J. Murnane

and K.-B. Liu, Eds, Columbia University Press, 178–221.

Luettich, R. A., J. J. Westerink, and N. W. Scheffner, 1992: ADCIRC:

An advanced three-dimensional circulation model for shelves,

coasts and estuaries, Report 1: Theory and methodology of

ADCIRC-2DDI and ADCIRC-3DL. Dredging Research

Program Tech. Rep. DRP-92-6, 137 pp.

Madsen, H., and F. Jakobsen, 2004: Cyclone induced storm surge

and flood forecasting in the northern Bay of Bengal. Coastal

Eng., 51, 277–296.

Moon, I., I. S. Oh, T. Murty, and Y. H. Youn, 2003: Causes of the

unusual coastal flooding generated by Typhoon Winnie on the

West Coast of Korea. Nat. Hazards, 29, 485–500.

Mukai, A. Y., J. J. Westerink, R. A. Luettich Jr., and D. Mark,

2002: Eastcoast 2001: A tidal constituent database for western

North Atlantic, Gulf of Mexico, and Caribbean Sea. U.S.

Army Engineer Research and Development Center, Coastal

and Hydraulics Laboratory Tech. Rep. ERDC/CHL TR-02-

24, 201 pp.

Parzen, E., 1962: On the estimation of a probability density func-

tion and mode. Ann. Math. Stat., 33, 1065–1076.

Pasch, R. J., D. P. Brown, and E. S. Blake, cited 2007: Tropical cy-

clone report, Hurricane Charley, 9-14 August 2004. [Available

online at http://www.nhc.noaa.gov/2004charley.shtml.]

Peng, M., L. Xie, and L. J. Pietrafesa, 2004: A numerical study of

storm surge and inundation in the Croatan-Albemarle-Pamlico

Estuary System. Estuarine Coastal Shelf Sci., 59, 121–137.

——, ——, and ——, 2006: Tropical cyclone induced asymmetry

of sea level surge and fall and its presentation in a storm

surge model with parametric wind fields. Ocean Modell., 14,

81–101.

Pietrafesa, L., L. Xie, and D. Dickey, 2002: NCSU CEMEPS: The

North Carolina University Coastal and Estuary Model &

Environmental Prediction System. Solutions to Coastal Di-

sasters ’02, L. Ewing and L. Wallendorf, Eds., ASCE, 441–455.

TABLE 6. Wall clock time (TEM) in minutes required to perform

the complete PL1–PL9 ensemble sets. Values are divided into

three groups based on their timeliness: TEM # 2 h (bold), 2 h ,

TEM , 6 h (normal), and TEM $ 6 h (italic). A single 5-day forecast

is estimated to be completed in 14 min.

PL

Number of processing elements

1 3 5 10 25 50 100 500 1000

1 14 14 14 14 14 14 14 14 14

2 42 14 14 14 14 14 14 14 14

3 126 42 28 14 14 14 14 14 14
4 378 126 84 42 28 14 14 14 14

5 1134 378 238 126 56 28 14 14 14

6 3402 1134 686 350 140 70 42 14 14

7 10 206 3402 2044 1022 420 210 112 28 14
8 30 618 10 206 6132 3066 1232 616 308 70 42

9 91 854 30 618 18 382 9198 3682 1848 924 196 98

JULY 2010 D A V I S E T A L . 2973



Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy,

1998: The HRD real-time hurricane wind analysis system. Wind

Eng. Ind. Aerodyn., 77–78, 53–64.

Safford, T., J. Thompson, and P. Scholz, 2006: Storm surge tools and

information: A user needs assessment. NOAA Coastal Services

Center Rep., 23 pp. [Available online at http://www.csc.noaa.gov/

needsassesments/(Storm%20Surge)%20finalstormsurgereport.

pdf.]

Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical

Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor.

Soc., 81, 1231–1240.

Scott, D. W., 1992: Multivariate Density Estimation: Theory,

Practice, and Visualization. Wiley, 317 pp.

SFRPC, 2006: 2006 South Florida regional hurricane evacuation

traffic study. South Florida Regional Planning Council Tech.

Support Document, 248 pp. [Available online at http://www.

sfrpc.org/data/RHEMTecSupportFinal.pdf.]

Shen, J., K. Zhang, C. Xiao, and W. Gong, 2006a: Improved pre-

diction of storm surge inundation with a high-resolution un-

structured grid model. J. Coastal Res., 22, 1309–1319.

——, H. Wang, M. Sisson, and W. Gong, 2006b: Storm tide simu-

lation in the Chesapeake Bay using an unstructured grid

model. Estuarine Coastal Shelf Sci., 68, 1–16.

——, W. Cong, and H. Wang, 2006c: Water level response to 1999

Hurricane Floyd in the Chesapeake Bay. Cont. Shelf Res., 26,

2484–2502.

Sheng, Y. P., 1987: On modeling three-dimensional estuarine and

marine hydrodynamics. Three-Dimensional Models of Marine

and Estuarine Dynamics, J. C. J. Nihoul and B. M. Jamart,

Eds., Oceanography Series, Vol. 45, Elsevier, 35–54.

——, 1990: Evolution of a three-dimensional curvilinear-grid hy-

drodynamic model for estuaries, lakes and coastal waters:

CH3D. Proc. First Int. Conf. on Estuarine and Coastal Mod-

eling, Newport, RI, ASCE, 40–49.

——, and V. Alymov, 2002: Coastal flooding analysis of Pinellas

County using ALSM data: A comparison between UF’s 2-D

method and results vs. FEMA’s method and results. De-

partment of Civil and Coastal Engineering, University of

Florida Rep., 67 pp.

——, and T. Kim, 2009: Skill assessment of an integrated modeling

system for shallow coastal and estuarine ecosystems. J. Mar.

Syst., 76, 212–243.

——, V. A. Paramygin, V. Alymov, and J. R. Davis, 2006: A real-

time forecasting system for hurricane induced storm surge and

coastal flooding. Estuarine and Coastal Modeling 2005, M.

Spaulding, Ed., ASCE, 585–602.

——, B. Tutak, J. R. Davis, and V. Paramygin, 2008: Circulation

and flushing in the lagoonal system of the Guana Tolomato

Matanzas National Estuarine Research Reserve (GTMNERR),

Florida. J. Coastal Res., 55, 9–25.

——, V. A. Alymov, and V. A. Paramygin, 2010: Simulation of

storm surge, wave, currents, and inundation in the Outer

Banks and Chesapeake Bay during Hurricane Isabel in 2003:

The importance of waves. J. Geophys. Res., 115, C04008,

doi:10.1029/2009JC005402.

Silverman, B. W., 1986: Density Estimation for Statistics and Data

Analysis. Monogr. Stat. Appl. Probab., Vol. 26, Chapman and

Hall, 175 pp.

Stewart, S., cited 2010: National Hurricane Center data avail-

ability. [Available online at http://www.aoml.noaa.gov/hrd/

hurrdatasession/NHC.pdf.]

Tolman, H. L., 2002: User manual and system documentation of

WAVEWATCH-III version 2.22. NOAA/NWS/NCEP/

MMAB Tech. Note 222, 133 pp.

Wolf, J., and R. A. Flather, 2005: Modelling waves and surges

during the 1953 storm. Philos. Trans. Roy. Soc. London, A363,

1359–1375.

Zhang, Y., A. M. Baptista, and E. P. Myers, 2004: A cross-scale

model for 3D baroclinic circulation in estuary–plume–shelf

systems: I. Formulation and skill assessment. Cont. Shelf Res.,

24, 2187–2214.

2974 M O N T H L Y W E A T H E R R E V I E W VOLUME 138


