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ABSTRACT

Three real-time storm surge forecasting systems [the eight-member Stony Brook ensemble (SBSS), the

Stevens Institute of Technology’s New YorkHarbor Observing and Prediction System (SIT-NYHOPS), and

the NOAA Extratropical Storm Surge (NOAA-ET) model] are verified for 74 available days during the

2007–08 and 2008–09 cool seasons for five stations around the New York City–Long Island region. For the

raw storm surge forecasts, the SIT-NYHOPS model has the lowest root-mean-square errors (RMSEs) on

average, while the NOAA-ET has the largest RMSEs after hour 24 as a result of a relatively large negative

surge bias. The SIT-NYHOPS and SBSS also have a slight negative surge bias after hour 24. Many of the

underpredicted surges in the SBSS ensemble are associated with large waves at an offshore buoy, thus

illustrating the potential importance of nearshore wave breaking (radiation stresses) on the surge pre-

dictions. A bias correction using the last 5 days of predictions (BC) removes most of the surge bias in the

NOAA-ET model, with the NOAA-ET-BC having a similar level of accuracy as the SIT-NYHOPS-BC

for positive surges. A multimodel surge ensemble (ENS-3) comprising the SBSS control member, SIT-

NYHOPS, and NOAA-ET models has a better degree of deterministic accuracy than any individual

member. Probabilistically, the ALL ensemble (eight SBSS members, SIT-NYHOPS, and NOAA-ET) is

underdispersed and does not improve after applying a bias correction. The ENS-3 improves the Brier skill

score (BSS) relative to the best deterministic member (SIT-NYHOPS), and the ENS-3 has a larger BSS and

better reliability than the SBSS andALL ensembles, thus illustrating the benefits of a multimodel storm surge

ensemble.

1. Introduction

a. Background

Storm surge is a major hazard for those coastal areas ex-

posed to tropical and/or extratropical cyclones. Storm surge

is defined as the rise of seawater above the astronomical

tide prediction as a result of surface winds around the

stormand relatively low surface pressure (Glickman 2000),

with winds having the largest impact on the surge. About

260 km2 of the New York City (NYC), New York, area

is at risk for storm surge flooding by a 100-yr storm event

(Bowman et al. 2005), so it is important to accurately

forecast these surge events. A surge of 0.6 m can cause

minor flooding during a high tide atBattery Park inNYC,

and thus this threshold often leads to a Coastal Flood

Advisory being issued by the National Weather Service

around south Manhattan (Colle et al. 2010). However,

surges as low as 0.2–0.3 m can cause coastal flood advi-

sory conditions, especially during a spring high tide in

vulnerable locations such as the back bays of the south
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shore of Long Island, western Long Island Sound, and

southern Queens (J. S. Tongue 2011, NYC National

Weather Service, personal communication).

There are a number of ocean models used to forecast

storm surge in the coastal zone. Historically, most have

been applied to landfalling hurricanes. For example, the

National Weather Service (NWS) utilizes the Sea, Lake

and Overland Surges (SLOSH) model developed by the

Meteorological Development Laboratory of the NWS

(Jelesnianski et al. 1992) for its hurricane surge predic-

tions. SLOSH ingests surface pressure, size of the storm,

surface winds, cyclone track, and forward speed to es-

timate storm surge heights for one of approximately 40

SLOSH basins along the U.S. east coast, including the

New York City metropolitan region.

Other ocean models have also been used to simulate

storm surge events for tropical cyclones. For example, Shen

et al. (2005) used the Advanced Three-Dimensional

Circulation Model for Coastal Ocean Hydrodynamics

(ADCIRC; Westerink et al. 1993) to hindcast the surge

for Hurricane Isabel (2003) in the Chesapeake Bay.

Utilizing a simplified wind model similar to SLOSH to

calculate the atmospheric forcing forADCIRC, the authors

found that the simulated surge (1.9–2.5 m)waswithin 0.3 m

of the observed, with an RMS error during the event of

0.19 m. Westerink et al. (2008) used ADCIRC to suc-

cessfully hindcast the surges associated with Hurricanes

Betsy (1965) and Andrew (1992) in southern Louisiana,

and the model was within 10% at most gauge stations.

Colle et al. (2008) used ADCIRC forced by a mesoscale

meteorological model (the fifth-generation Pennsylva-

nia State University–National Center for Atmospheric

Research Mesoscale Model, MM5) at 12-km grid spac-

ing to realistically simulate the surge fromTropical Storm

Floyd (1999) impacting the NYC-Long Island (NYC-LI)

region to within ;0.1 m of the observed. Weisberg and

Zheng (2006) used the Finite Volume Coastal Ocean

Model (FVCOM) in the Tampa Bay, Florida, area and

found that the storm surge for that region is sensitive to

storm track and storm speed, with slower-moving storms

having twice the storm surge of faster-moving cyclones.

Storm surge from nontropical (extratropical) cyclones

generates different challenges than those from hurri-

canes. The assumed parametric wind field in SLOSH,

which is perturbed based on the forward motion of the

storm, is less accurate due to large asymmetries in the

surface wind and pressure fields for midlatitude cyclones

and tropical storms that undergo an extratropical tran-

sition (Atallah and Bosart 2003; Colle 2003). As a result,

the NWS developed the Extratropical Storm Surge

(NOAA-ET) model during the mid-1990s (Burroughs

and Shaffer 1997, Blier et al. 1997). The NOAA-ET

model is a vertically averaged barotropic ocean model

that includes a specified bottom friction (Tilburg and

Garvine 2004), similar to the SLOSHmodel. The NOAA-

ET model is forced with the surface wind and pressure

fields from the National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS)

model. Also, in addition to the U.S. west coast, the Gulf

of Mexico, and Alaska, the NOAA-ET model is run

along theU.S. east coast on a large grid that covers much

of the western Atlantic and for about 4 days, since ex-

tratropical surge events can persist at a location formore

than 24 h (Blier et al. 1997). Tilburg and Garvine (2004)

verified that the NOAA-ET model and a simple linear

regression model for surge forecasts at Atlantic City,

New Jersey, from1997 to 1998. They found that the short-

term (5 day) anomaly-corrected NOAA-ET model ex-

plained 79% of the total observed subtidal frequency of

the water level as compared to the 74% of the anomaly-

corrected regression model. Blier et al. (1997) used the

NOAA-ET model along with winds and sea level pres-

sure from the GFS analyses to hindcast storm surges

along the southern coast of Alaska. They found that the

model realistically predicted the timing of the surge in a

longer-duration event (.24 h) (6 October 1992) and the

magnitude to within 0.8 m, although for a short-duration

surge event (;12 h) (20 August 1993) the model did not

have a peak surge, failing to capture the surge event at

all and underpredicting the observed surge by ;1.0 m.

This deficiency may have been from the low temporal

and spatial resolutions of the GFS wind fields, which

could not resolve the coastally enhanced winds along the

Alaskan coast.

Over the course of several years, Blumberg et al. (1999)

used a shallow-water derivative of the Princeton Ocean

Model (POM) to forecast storm surge in the New York

Bight. They found that the mean error in the total water

levelwas;11%of the localmaximumrange and themean

correlation coefficient between the data and model was

0.94 from October 1994 to September 1995.

b. Motivation

There has been limited evaluation of operational storm

surge models for coastal southern NewEngland and New

York. Colle et al. (2008) successfully simulated the surge

at the Battery inNYC towithin 5%–10%of the observed

from theDecember 1992 nor’easter usingADCIRC forced

with 12-km MM5 observed winds. Although these re-

sults are encouraging, existing storm surge models need

to be verified for more events. In addition, such storm

surge hindcasts can bemore accurate than real-time storm

surge forecasts if the hindcasts are based onmodels forced

with analysis winds, pressures, etc.With the relatively large

NYC-LI population and a complex coastal geometry prone

to storm surge flooding, it is important to investigate the
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skill of storm surge forecast models over a longer veri-

fication period than just a few surge events.

Although it is important that these storm surge models

can predict the severe flooding events, it is first useful to

compare the models against all types of events. There are

not enough moderate coastal flooding events in the last

several years at NYC to verify the models with statistical

significance, but this study will include a large sample of

storm surges to 0.4 m, which can cause problems during a

high tide around parts of NYC and Long Island.

There are currently several modeling systems from

various institutions [NOAA-ET, the Stevens Institute of

Technology’sNewYorkHarborObserving and Prediction

System (SIT-NYHOPS), and StonyBrookUniversity] that

forecast storm surge in real time for the NYC-LI region;

however, there has not been any formal intercomparison of

these models. Also, the Stony Brook storm surge (SBSS)

system is run in an ensemble (eight member) configura-

tion, so the benefits of the SBSS need to be quantified over

using any single model as well as using all three (multi-

model) operational models together. An ensemble with

combined physics and initial condition perturbations has

been shown to improve atmospheric predictions as com-

pared to the individual members on average (Eckel and

Mass 2005). In addition, a multimodel atmospheric en-

semble can further improve the forecast over an ensemble

of just onemodel (Mylne et al. 2002;Woodcock andEngel

2005). Thus, it is hypothesized that an ensemble of storm

surge models using various atmospheric models as forcing

should performbetter on average than a single atmospheric

model used as forcing for a single ocean model.

This paper will address the following questions:

d Howwell do theADCIRC, SIT-NYHOPS, andNOAA-

ET models predict storm surge during one-and-a-half

cool seasons around NYC-LI, which includes several

extratropical cyclone events?
d What is the potential contribution to surge errors from

the simulated atmospheric forcing as compared to

uncertainties between surge models?
d What is the potential benefit of using a multimodel

ensemble versus a single model for storm surge pre-

diction?

Section 2 describes the data and methods used in the

analysis. The cool-season deterministic verification of

the ADCIRC, NOAA-ET, and SIT-NYHOPS forecast

systems and the ensemble of all three models are pre-

sented in section 3, while section 4 summarizes the

probabilistic verification. Summary and conclusions are

highlighted in section 5.

2. Data and methods

a. Storm surge modeling systems

Three operational, real-time modeling systems were

evaluated aroundNYC-LI over one-and-a-half cool-season

periods during which the forecasts from the modeling

systems were available (74 forecasts from November

2007 toMarch 2008 and fromOctober 2008 to December

2008). Operational storm surge forecasts were ob-

tained from the SBSS, SIT-NYHOPS, and NOAA-

ET modeling systems. Figure 1 shows the five stations

aroundNYC-LI used in the verification analysis. Table 1

lists the important configurations for the three model-

ing systems.

The ADCIRC model used by the SBSS simulates

water elevation and currents for the domain along the

U.S. east coast to offshore over the continental shelf

(Fig. 2a) by solving the generalized wave continuity equa-

tion. It was run in a two-dimensional (barotropic) con-

figuration on a grid that has triangular finite elements

(;108 000 nodes) ranging from a 70-km grid-node sep-

aration offshore to about 10 m around parts of Long

Island and NYC (Colle et al. 2008), with the highest reso-

lution around the coast, specifically New York Harbor.

The M2, K1, O1, N2, and S2 tidal constituents obtained

from an ADCIRC global model are applied along the

boundary during the entire run, as in Westerink et al.

(1993).

The SBSS ensemble surge system consists of eight

separate ADCIRC members run every 0000 UTC to

hour 48 with the surface wind and pressure from either

the Weather Research and Forecasting Model (WRF;

Skamarock et al. 2005) or the MM5 (Grell et al. 1995).

The MM5 and WRF are run with two domain resolu-

tions (36- and 12-km grid spacing) starting each day at

0000 UTC. The 36-km grid covers from the Rocky

FIG. 1. Spatial map showing the locations of the five water level

sites around Long Island used for storm surge verification.
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Mountains to well off the U.S. east coast (Jones et al.

2007), which provides boundary conditions for a one-

way nested 12-km grid covering the northeast United

States. The 12-km grid is used to force the ADCIRC

model (Fig. 2a). The ADCIRC members are ‘‘hot star-

ted’’ each day by using the previous day’s 24-h forecast

as the initial water level for the new forecast in order to

reduce spinup issues; however, observations are not as-

similated to improve this first guess given the general

lack of water level observations across the domain. To

avoid model errors continually being used as initial

conditions, the ensemble is cold started approximately

every 2 weeks, during which time there is a 1-day spinup

period with tidal forcing before applying the MM5 or

WRF winds. The five MM5 members and three WRF

members used in the ensemble are run with varying

initial conditions and model physics (Table 2). Four

different atmospheric analyses are used for the initial

and boundary conditions [the Nonhydrostatic Meso-

scale Model component of the WRF (WRF-NMM), the

NavyOperationalGlobalAtmosphericPrediction System

(NOGAPS), GFS, and the Canadian Global Model], four

different microphysics schemes [Simple Ice (Dudhia

1989), Reisner (Reisner et al. 1998), Ferrier (Ferrier et al.

2002), and the WRF single-moment three-class (WSM3;

Hong et al. 2004)], four different planetary boundary layer

(PBL) schemes [the Medium-Range Forecast (MRF;

Hong and Pan 1996), Mellor–Yamada (Janjić 2002),

Blackadar (Zhang and Anthes 1982), and Yonsei Uni-

versity (YSU;Hong et al. 2006)], two radiation packages

[for cloud radiation, the Chemistry–Climate Models

(CCM2; Hack et al. 1993), and the Rapid Radiative

Transfer Model (RRTM; Mlawer et al. 1997)], and three

different convective parameterizations [Grell (Grell

1993), Betts–Miller (Betts and Miller 1993), and Kain–

Fritsch (Kain 2004)]. The first member (9a) in Table 2 is

the control member for the SBSS ensemble in the sub-

sequent discussion, since it uses the MM5 member that

has been run for several years over the northeast United

States (Colle et al. 2003; Jones et al. 2007).

The SIT-NYHOPS hydrodynamic model used for this

paper comprises the forecasting module of NYHOPS

(Bruno et al. 2006; Georgas 2010). The model is based

on an updated version of the Estuarine, Coastal, and

Ocean Model (ECOM), itself a derivative of POM.

ECOM is a three-dimensional, time-dependent model

that solves the primitive shallow-water equations re-

garding the conservation of mass, momentum, heat, and

salt (Blumberg et al. 1999). The version of the model

used in NYHOPS is driven by tides, surface wind, sur-

face heat fluxes, and river and stream inflows, as well as

freshwater and heat fluxes from 280 point sources

[sewage treatment and thermal power plants; Georgas

(2010)]. The 3-hourly forecasts by the 12-km resolution

version of the NCEP North American Model (NAM)

are used for the surface wind stress. The domain extends

from the coast of Maryland in the south to Nantucket,

Massachusetts, to the north and includes the Hudson

River up to the Troy Dam (Fig. 2b). The resolution of

the finite-difference numerical grid runs from 50 m in-

side the rivers to 11 km at the southern edge of the

offshore boundary. Tidal forcing is provided at the off-

shore boundary by theM2, S2, N2, K2,O1, K1,Q1,M4,

and M6 tide and overtide constituents extracted from

the East Coast 2001 database (Mukai et al. 2002). The

SIT-NYHOPS system is run in a three-dimensional

configuration, with 10 sigma levels scaled to the local

water column depth. In forecast mode, the model per-

forms a 72-h simulation starting each day at midnight

eastern standard time (EST; 0500 UTC). This includes

a 24-h hindcast of the previous day by using the 6-hourly

NAM analyses (Bruno et al. 2006; Georgas 2010).

The NOAA-ET model is based on the same quasi-

linear depth-integrated shallow-water equations as the

SLOSHmodel (Burroughs and Shaffer 1997; Jelesnianski

et al. 1992). However, the NOAA-ET simulations do

not use a parametric windmodel as in SLOSH, but rather

the GFS model for hourly wind and pressure forcing.

Figure 2c shows themodel domain. Unlike the SBSS and

SIT-NYHOPSmodeling systems, the NOAA-ETmodel

only predicts storm surge and does not include tides

(Burroughs and Shaffer 1997). The NOAA-ET model

uses a reference sea level to determine the storm surge

produced with the surface wind and pressure forcing.

The storm surge levels are then added to the National

Ocean Service (NOS) predicted tides above the North

American Vertical Datum of 1988 (NAVD-88; Zilkoski

et al. 1992) to obtain the total water levels.

Observed storm surge levels were determined by sub-

tracting the predicted astronomical tide from the total

TABLE 1. Description of three storm surge forecasting systems for the NYC-LI region.

Storm surge forecasting systems

Institution Atmospheric forcing Ocean model Start time (UTC)

Stony Brook Five MM5 and three WRF members ADCIRC 0000

Stevens Institute of Technology NCEP-NAM model ECOM 0500

NOAA NCEP-GFS model NOAA-ET model 0000
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(measured) water levels at each station. The tide was

derived from the T-tide program (Pawlowicz et al. 2002),

which performs a harmonic analysis on the observed wa-

ter level: in this study the November 2007–March 2008/

October 2008–December 2008 NOAA observed water

levels at each individual station around NYC-LI. The

derived tides were used, since the astronomical tides

provided by NOAA are referenced to the 1983–2001 Na-

tional Tidal Datum Epoch, and there are other tidal vari-

ations from dredging and other shoreline changes.

b. Postprocessing and verification approach

Several error metrics were used to determine the ac-

curacy of each modeling system based on five stations

around NYC-LI (Fig. 1). The RMSE in Eq. (1) and the

mean error [ME in Eq. (2)’s ‘‘bias’’] were used in the

deterministic verification:

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
å
n

k51
(y

k
2 o

k
)2

v

u

u

t

and (1)

ME 5
1

n
å
n

k51
(yk 2 ok), (2)

where yk is the forecasted value, ok is the observed value

at the same time, and n is the total number of values. A

forecast time was included in the ME and RMSE cal-

culations if either the observation or any ensemble mem-

ber (or average of select members for ensemble mean)

exceeded a given threshold.

To determine how well the SBSS ensemble system

and all models together performed probabilistically, the

Brier score (BS) and Brier skill score (BSS) were cal-

culated from

BS 5
1

n
å
n

k51
(tk 2wk)

2 (3)

and

BSS 5 1 2
BS

BSref

 !

, (4)

where tk refers to the probability forecast, wk refers to

whether the event (observed exceeding a particular

threshold at a station) occurred (wk5 1) or not (wk5 0),

and BSref is the reference BS to compare the ensemble

with, which is typically climatology or some other model.

In essence, the Brier score is themean square error of the

probability forecasts (Wilks 2006). Furthermore, theBrier

score was separated into reliability (REL), resolution

FIG. 2. (a) Domain used in the SBSS real-time storm surge

forecasting ensemble. (b) The grid used by SIT-NYHOPS (from

Georgas and Blumberg 2010). (c) The NOAA-ET model East

Coast grid.
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(RES), and uncertainty (UNC), where BS 5 REL 2

RES1UNC (Wilks 2006). Rank histograms (Talagrand

diagrams) were also calculated for several stations across

the New York metropolitan region to evaluate the dis-

persion of the ensemblemembers (as inWilks 2006). Small

randomnoise (;0.02 m)was added to the observed surges

in order to represent the uncertainty in the observed values

in these diagrams (Hamill 2001).

In addition to evaluating the individual storm surge

systems (SBSS, SIT-NYHOPS, and NOAA-ET), two

ensembles were created by using all surge models and

the SBSS ensemble (multimodel or the ALL ensemble),

as well as a three-member ensemble of storm surge

models (ENS-3): the SBSS control member and the

NOAA-ET and SIT-NYHOPS models. The surge verifi-

cation was hourly to be consistent with the availability of

the NOAA-ET model. Also, since the SIT-NYHOPS

began its forecasts at 0500UTC, while SBSS andNOAA-

ETbegan at 0000UTC, all models were compared for the

same forecast hour (i.e., 1–48 h) rather than the same

time of day (i.e., 0600–0600 UTC). As a result, during the

first 5 h (0000–0500 UTC), the ALL and ENS-3 ensem-

bles consisted of only the SBSS and NOAA-ET mem-

bers. The models were also only intercompared for

74 days in which all three models had data (listed in

DiLiberto 2009). The verification was done for five sta-

tions across NYC-LI: The Battery, NYC; Sandy Hook,

New Jersey; King’s Point, New York; Bridgeport, Con-

necticut; and Montauk Point, New York see Fig. 1).

Themembers in the three ensemble systemswere ‘‘bias

corrected’’ with the approach used for the operational

NOAA-ET. For each member, the predicted surge is

adjusted by averaging the surge error for the previous

5 days of 1–24-h forecasts and subtracting this error from

the latest prediction [an ‘‘anomaly correction,’’ as de-

scribed in Tilburg and Garvine (2004)]. A similar ap-

proach has been applied to atmospheric ensembles using

the previous 7–14 days of forecasts (Eckel andMass 2005;

Jones et al. 2007). Although this 5-day approach may not

necessarily improve the forecast, this adjustment will still

be referred to as a bias correction given that some fore-

casts/members are improved. The ALL–BC and ENS-

3–BC ensembles verified below include members after

applying the 5-day bias correction.

Finally, in order to test for statistical significance, a

bootstrapping approach was used to resample the data

and obtain proper confidence intervals around the means

(Zwiers 1990). For each parameter (e.g., RMSE of surge

error), a new sample of the same size was obtained by

randomly selecting from the original sample and allowing

for repeated selections. Themeanwas calculated and this

process was repeated 1000 times. The 90% confidence

intervals around the mean were determined by finding

the 5th and 95th percentiles of the means of all 1000

resamples. If the confidence intervals of two particular

samples did not overlap, then they were considered to be

significantly different at the 90% level.

3. Deterministic verification results

a. No bias correction

The surge predictionswere binned in 12-h intervals from

1 to 48 h in order to increase the sample size. Figure 3a

shows the ME for storm surge versus forecast hour av-

eraged for all five stations. During the 1–12-h forecast,

there is little bias (ME) in the SIT-NYHOPS results,

a slight negative bias (20.03 to 20.04 m) in the SBSS

control member (SBSS CTL), and a larger negative bias

(0.08–0.09 m) in the raw NOAA-ET data. The SBSS

CTL ME has little bias by 13–24 h and is similar to the

SIT, while the raw NOAA-ET negative bias becomes

slight larger (20.10 m). The SIT-NYHOPS and SBSS

simulations develop slight negative biases (20.03 to

20.04 m) by 25–48 h of the forecast, while the NOAA-

ET negative bias increases to20.12 m. Because all mem-

bers develop a negative bias, the ALL ensemble is also

negative and it is similar to the SBSS ensemble mean

given the large number of SBSS members in the ALL

dataset (Fig. 3b). The ENS-3 mean has a negative bias

TABLE 2. Description of the atmospheric SBSS ensemble members, including models used, microphysical schemes, PBL schemes,

radiation schemes, cumulus schemes, and initial conditions.

SBSS model atmospheric ensemble members

Members Model Microphysics PBL scheme Radiation Cumulus Initial conditions

9a MM5 Simple Ice MRF Cloud radiation Grell WRF-NMM

BMMY MM5 Simple Ice MY CCM2 Betts–Miller GFS

GRBLK MM5 Simple Ice Blackadar CCM2 Grell NOGAPS

K2MRF MM5 Reisner MRF Cloud radiation Kain–Fritsch GFS

K2MY MM5 Simple Ice MY CCM2 Kain–Fritsch Canadian model

221 WRF Ferrier YSU RRTM Kain–Fritsch WRF-NMM

GFS WRF Ferrier YSU RRTM Grell GFS

NOG WRF WSM3 YSU RRTM Betts–Miller NOGAPS
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(20.06 to 20.07 m between hours 25 and 48 h), since

one-third of the weight is from the negatively biased

NOAA-ET member.

Figure 4a shows the RMSE for the SBSS CTL, SIT-

NYHOPS, andNOAA-ETmembers. At hours 1–12, the

SBSS CTL has the largest RMSEs (;0.17 m), while the

NOAA-ET has slightly lower RMSEs (;0.15 m), and

SIT performs the best with RMSEs around 0.13 m. By

hours 13–24, the SBSS CTL has errors similar to those of

NOAA-ET (;0.16 m), while the SIT-NYHOPS system

has the lowest RMSEs on average (;0.12–0.13 m). After

hour 24, the NOAA-ET errors (;0.17 m) are the largest

of all members and increase with forecast hour, while the

SIT-NYHOPS RMSEs (;0.13 m) are smaller than the

SBSS CTL and SBSS ensemble mean (;0.15 m) but are

similar to the ALL ensemble (Fig. 4b). The ENS-3 has

slightly smaller errors than the SIT-NYHOPS, but this dif-

ference is only significant at the 90% level between 25 and

36 h; however, this does illustrate that the three-member

ensemble can outperform the best individual member

for a deterministic verification.

TheME and RMSE for the individual SBSS members

are clustered (within 0.03 m of each other; see Fig. 5).

During hours 1–12, all SBSS members show more neg-

ativeMEs and largerRMSEs than for hours greater than

12, which is likely due to initialization errors in the SBSS

ensemble. From hours 37–48, the K2MY and GRBLK

models (Table 2), with errors;20.01 m, are less biased

than the other ensemble members at the 90% confidence

interval. There is some suggestion that the WRF mem-

bers (gray lines) have a slightly more negative bias at all

hours, but the results are not statistically significant.

Across all stations, the SBSS ensemble mean and control

member have slightly lower RMSEs than do the other

SBSS members, but the differences are not statistically

significant. Generally, the GRBLK has the largest error

for 13–24 h, while the BMMY has an error that is larger

(significant at the 90% level) than most other members

from 25 to 36 h.

Interestingly, the model errors for the SBSS and ALL

ensembles do not increase with increasing forecast lead

FIG. 3. (a) Mean error (m) in predicted storm surge vs forecast

hour averaged over 12-h periods and the five stations throughout

southern New England before and after bias correction (BC). (b)

As in (a), but for the SBSS, ALL, and ENS-3 ensemble means.

FIG. 4. As in Fig. 3, but for RMSE (m).
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time (Fig. 4b). Meanwhile, the NOAA-ET model and,

to a lesser degree, the SIT-NYHOPS between 1 and 48 h

show increasing RMSEs with forecast hour (Fig. 4a),

which is expected given that atmospheric wind and

pressure errors typically increase with greater lead time

(as will be shown in the next section). This is not sur-

prising given the performance of the SBSS individual

members shown in Fig. 5. This suggests that use of the

previous day’s forecast to initialize the SBSS members

had a detrimental impact early in the forecast.

To understand the spatial distribution of errors across

the region, the MEs and RMSEs are calculated at each

station for the same 13–48-h forecast period (Fig. 6). The

first 12 h of the forecast was not included to minimize

any spinup issues. The SIT-NYHOPS model has the

smallest ME at the Battery and Sandy Hook stations,

while the SBSS had the smallest bias at Kings Point and

Montauk. The ALL ensemble had the smallest ME at

Bridgeport. The largest negativeMEs in the NOAA-ET

(20.12 to20.13 m) were at Bridgeport and King’s Point,

whichmay be in part from the using theGFS, which could

not resolve the surface winds over Long Island Sound.

The SIT-NYHOPS and ENS-3 have comparable RMSEs

at most stations, which are smaller than the other models

and the ALL mean. The ENS-3 is more accurate than

SIT-NYHOPS at SandyHook, which is significant at the

90% level. Overall, the largest errors among all of the

models are within Long Island Sound at Kings Point and

Bridgeport, which is likely because the tides are larger

there, and so part of the RMSE is the result of the tide

not being perfectly resolved by the tidal models (Georgas

and Blumberg 2010).

The NOAA-ET, SIT-NYHOPS, and SBSS CTL sim-

ulations, and the combined ensemble, were also eval-

uated for different surge thresholds between 13 and 48 h

to determine how their performance behaves during

small and large events (Fig. 7). TheME andRMSEwere

calculated at each station when either the model or ob-

servation exceeded the following surge thresholds:.0.4,

.0.3, .0.2, .0.1, .0, ,0, #0.1, #0.2, #0.3, and

#0.4 m), so the model performance can be assessed.

The five stations were combined to increase the sample

size. For example, there are 720 hwhen the observations

or SBSS CTL forecasts are less than 20.4 m and 455 h

when greater than 0.4 m. For the negative surge events

(water less than tide or less than 0 m), the SBSSCTL has

a positive ME (;0.05 m; see Fig. 7a), while the SIT-

NYHOPS has a 20.02 m bias and the NOAA-ET has

a negative error (;0.11 m). This positive error increases

for the SBSS CTL and SIT-NYHOPS as the negative

surge increases, so that for events #0.4 m, the MEs for

the SBSS CTL and SIT-NYHOPS are 0.13 and 0.04 m,

respectively. In contrast, the NOAA-ET negative bias in-

creases to 20.13 m for events #0.4 m. Given the clus-

tering among members, the ALL ensemble has a similar

mean (bias) error as the SBSS and SIT-NYHOPS (not

shown). The RMSE errors are the smallest for SIT-

NYHOPS for surge events ,0 m.

For the positive surge events (water level greater than

tide), the SBSS CTL has anME that is more negative for

larger storm surge events (Fig. 7a), reaching20.22 m for

surges .0.4 m. Meanwhile, the NOAA-ET mean error

remains negative and fairly constant with increasing

storm surge (20.13 to 20.15 m). The SIT-NYHOPS

performs the best at all stations for positive surges (Figs.

7a and 7b), with the SIT-NYHOPS having an ME for

.0.4 m surge of about20.09 m and anRMSEof;0.22 m

for the 13–48-h forecast.

Although there were only five events (;40 h) with

.0.6-m surges (coastal flooding threshold for the Bat-

tery), the results averaged for 1–48-h forecasts are simi-

lar to the.0.4-m threshold above. More specifically, all

members have a negative ME for a .0.6-m surge (not

shown), with SBSS the largest (20.18 m) and the SIT

FIG. 5. (a) Mean surge error (m) for each member and ensemble

mean (SBSS) of the Stony Brook storm surge ensemble. (b) As in

(a), but with RMSE.
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and NOAA-ET simulations having similar errors around

20.11 m. For thesemoremajor events, the SIT-NYHOPS

model has the lowest RMSE (0.21 m) among all three of

the modeling systems, which is similar to the result for

ENS-3 (0.22 m).

b. Relationship of raw surge errors to wind errors

While there are greater differences between the vari-

ous storm surge modeling systems, the MEs and RMSEs

of the rawMM5andWRFmembers in the SBSS ensemble

are clustered. To illustrate the relationship between some

of the surge errors and the surface wind predictions over

the water, the surface winds in the NCEP NAM, as well

as the Stony Brook WRF and MM5 members, were

verified at the closest available buoy (see 44017 in Fig.

1). The model data were bilinearly interpolated to the

observation point, in this case the buoy, using surround-

ing grid points. Due tomissing archived wind data in both

the NCEP-NAM and the SBSS ensemble simulations,

comparisons are made for only 50 days, in which the

FIG. 6. (a) Mean errors (m) before (left number) and after (right number) bias correction for

the individual stations around Long Island averaged between 12 and 48 h for the SBSS control

member, SIT-NYHOPS, NOAA-ET, ALL, and ENS-3. (b) As in (a), but for RMSE. The

boldface numbers highlight which member or ensemble mean performed best.
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average wind speed and its standard deviation at the buoy

are ;8.9 and 3.8 m s21, respectively. The average RMS

differences in wind direction between members are

generally less than 108 throughout the 48-h forecast (not

shown), similar to the results in Jones et al. (2007; see

their Fig. 2d). Thus, the focus is on the relationship be-

tween the predicted wind speed and storm surge error.

In general, Jones et al. (2007) also showed that wind

speeds among the atmospheric members of the SBSS

ensemble tend to be underdispersed. The surface wind

errors aremore negative (;0.5 m s21 lower) in theNAM

than in the MM5–WRF (Fig. 8a), yet the SIT-NYHOPS

mean errors are similar to the SBSS control results for

many forecast hours (Fig. 3a). The NAM also has one of

the largest RMSEs for surface wind speeds (Fig. 8b);

however, the SIT-NYHOPS ocean model (which uses

the NAM forcing) has lower RMSEs than do the SBSS

ensemblemembers (Figs. 4b and 5b). Interestingly, even

though model wind RMSEs increase with forecast hour

(Fig. 8a), SIT-NYHOPS and the SBSS control member

RMSEs are flat after hour 24 (Fig. 4a). However, unlike

the SBSS and NOAA-ET, when the SIT-NYHOPS er-

rors are binned every 3 h (not shown), the SIT-NYHOPS

surge errors have a diurnal pattern that is similar to that

of the NAM wind errors shown in Fig. 8a, although the

surge errors are lagged by several hours (not shown). This

suggests that the pattern of diurnal wind errors has

a larger influence on the SIT-NYHOPS results. Closer

inspection of the surface stress formulations used in

ADCIRC (Garratt 1977), and SIT-NYHOPS (Large and

Pond 1982), revealed that SIT-NYHOPS has 15%–25%

less stress than ADCIRC for wind speeds 11–25 m s21,

with similar results for other winds. Thus, the differences

in water level predictions between ADCIRC and SIT-

NYHOPS are likely not the result of the surface stress

formulations, but rather from the ocean model setup

(spinup procedures, model three-dimensionality, etc.).

The ADCIRC forecasts errors are relatively clustered

evenwith some diversity in the wind errors (Fig. 8), which

FIG. 7. (a) Storm surge mean error (m) across 5 stations for each

of 10 different storm surge thresholds for the SBSS control, SIT-

NYHOPS, and NOAA-ET before and after bias correction. For

each ensemble member, the data were binned depending on

whether the observation or the model met the threshold. (b) As in

(a), but for RMSE.

FIG. 8. (a) Wind speed mean error (m s21) for all eight members

of the SBSS ensemble and the NCEP-NAM averaged over 48 h of

the forecast. (b) As in (a), but for RMSE. The data before hour 5

were unavailable.
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suggests that to increase the diversity of the storm surge

predictions, different ocean models should be used in

an ensemble.

c. Spatial weather patterns favoring SBSS biases

It was hypothesized that there are certain weather

patterns that yield larger negative and positive errors

in the SBSS system. A composite was constructed using

the NCEP–National Center for Atmospheric Research

(NCAR) daily reanalysis data (Kistler et al. 2001) showing

sea level pressure (SLP) for the unique dates among the

10 most negative (15 total dates) and positive (13 total

dates) averaged 25–48-h forecast error days in the SBSS

control member at the Battery; Sandy Hook, New Jer-

sey; and King’s Point, New York (Figs. 9a and 9b). The

composite of the largest negative error days (#0.22 m)

for the control SBSS member has a cyclone located just

off of Cape Cod, Massachusetts, at the time of the largest

surge error (Fig. 9a). This is a familiar setup for large

surge events for NYC as a nor’easter cyclone tracks along

the coast (Colle et al. 2010). The northeasterly flow with

the cyclone helps push water along the mid-Atlantic

coast.

In contrast, the SLP composite of the largest positive

errors (.0.096 m) in the SBSS shows the presence of

a large ;1030-hPa high pressure area off the coast of

Virginia and North Carolina (Fig. 9b). Thus, the south-

westerly winds over the northeast United States result in

water transported away from the coast and the storm

surges are negative. These results suggest that the model

has a difficult time capturing the movement of water away

from the coast during these events.

One possible reason for a negative surge on storm

days is the impacts of waves on storm surge, which is

neglected in the operationalmodels.Westerink et al. (2008)

mentioned that waves positively enhanced storm surges

by 0.6–1.2 m during Hurricane Katrina across Louisiana.

To illustrate the potential impacts of waves on the veri-

fication of surge results, significant wave heights at buoy

44017 were averaged daily over the same 74 days as the

surge verification and compared with the corresponding

day 2 (25–48 h) surge error of the SBSS ensemble mean

at Montauk Point (Fig. 10). When there are larger wave

heights, the surge error tends to be more negative, with

a correlation coefficient (r) of 20.38. This occurs more

when the waves are relatively large (.2.5 m). It is well

known that waves can increase storm surge through the

momentum they impart into thewater column (‘‘radiation

stress’’) through wave breaking (Resio and Westerink

2008). This illustrates the potential importance of cou-

pled ocean–wave models for surge prediction. Although,

outliers (large positive model errors) in Fig. 10 emphasize

that other factors, including wind speed, wind direction,

and sea level pressure error, can be as ormore influential

than waves.

d. Impacts of bias correction

The above raw ensemble results suggest that surge

models may have biases, which can result from a number

of sources (errors in predicted tides in SIT-NYHOPS

and SBSS, grid resolution, surface and bottom stress

formulations, waves, meteorological wind and pressure

biases, initialization schemes, and vertical datum cali-

bration issues). A 5-day anomaly bias correction was ap-

plied to each ensemble member as described in section

2b. This correction removed most of the negative bias in

the NOAA-ET member at all forecast hours (Fig. 3a).

There is also a slight positive ME (0–0.2 m) for the SBSS

CTL member from 1 to 48 h (Fig. 3a); therefore, the

5-day correction results in a slight positive bias (;0.03 m)

during the 1–48-h period in the SBSS andALLensembles

(Fig. 3b). The NOAA-ET MEs were improved at all

thresholds (Fig. 7a), while the SBSS and SIT-NYHOPS

FIG. 9. (a) NCEP–NCAR reanalysis SLP composite (shaded,

hPa) at the times for the unique dates between the 10 largest

negative storm surge error, day-2 (24–48 h) forecasts for SBSS

control members at the Battery, SandyHook, and King’s Point. (b)

As in (a), but the 10 largest positive surge errors.

932 WEATHER AND FORECAST ING VOLUME 26



biases were reduced only for the positive surges. TheMEs

for the SBSS negative surges increased after bias cor-

rection. Closer examination revealed that there were

many cases in which the bias correction added the wrong

(sign) correction during these offshore flow (negative

surge) conditions (Figs. 7a and 7b), since these periods

sometimes occur after a positive surge period with on-

shore flow near a front or cyclone.

The bias correction reduced theRMSEs for theNOAA-

ET model at all times (Fig. 4a), but it resulted in little

change in the SIT-NYHOPS and an increase in errors

for the SBSS. As a result, the SIT-NYHOPS andNOAA-

EThave similar accuracy after bias correction for positive

surges, while the bias-corrected SBSS has the largest er-

rors. The SBSS used a water level cycling from the pre-

vious day’s surge forecast to initialize, and this likely

increased the error for this member. Also, the largest

SBSS RMSEs are for the negative surges, which the bias

correction could not fix as easily.

All ensemble members were averaged after bias cor-

rection (ALL–BC), which can be compared to the no

bias correction ensemble (ALL). A three-member en-

semble of bias-corrected SBSS CTL, SIT-NYHOPS,

and NOAA-ET members was also created (ENS-3–BC).

For hours 1–24 (Fig. 3b), there was no improvement in

the mean error after bias correction for the SBSS en-

semble, since bias correction resulted in a slight positive

ME (;0.02 m), while there is less bias in the ENS-3–BC

and ALL–BC results. After hour 24, the ALL–BC run

has a near-zero bias, which is better than the other en-

semble averages at the 90% significant level. The en-

semble mean with the lowest RMSE after bias correction

is the ENS-3–BC (Fig. 4b), but the ENS-3–BC RMSEs

are only slightly less than those of SIT-NYHOPS–BC

and thus are not significant at the 90% level. The reason

the ENS-3–BC model is outperforming the ALL–BC

deterministically is that most of theALL–BC simulation

is weighted from the SBSS members, which are clus-

tered and have less accuracy than the SIT-NYHOPS and

NOAA-ET members after bias correction.

4. Probabilistic verification results

An important objective of an ensemble is to improve

the probabilistic skill. Ideally, each of the equally

weighted ensemble members should have a similar level

of accuracy. Figure 11a shows the percentage of the time

that each member of the SBSS–BC ensemble, as well as

the two ensemble means (ALL–BC and ENS-3–BC),

performed the best (lowest RMSE) for the 13–48-h fore-

casts. Because the comparison is between the ensembles

means and their individual members, the SIT-NYHOPS

used in Fig. 11 has been shifted so that all models are

compared over the same forecast period. Even so, the

SIT-NYHOPS and NOAA-ET models after bias cor-

rection are the best, with a similar percentage on aver-

age (15%–30%), which is greater than any of the eight

SBSS ensemblemembers (2%–7%). The SIT-NYHOPS

FIG. 10. Averaged daily significant wave height at buoy 44017 compared with daily averaged

mean error for the SBSS control member at Montauk Point for the same corresponding days.

See Fig. 1 for buoy 44017’s location.
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is the best, more than the NOAA-ET at King’s Point,

while NOAA-ET is the best member most often at

Montauk. The clustering of the SBSS member errors

(Fig. 6) is consistent with the percentage best being

spread nearly equally among its members. The ENS-3–

BC is best also nearly the same as in the NOAA-ET and

SIT-NYHOPS models, since two-thirds of the ENS-3

meanoriginates from these twomodels.On the other hand,

the ALL–BC is more weighted by the SBSS ensemble,

and thus it is best only slightly more than each of the

SBSS members.

The number of times that each member after bias

correction is theworst was also calculated (Fig. 11b). For

the SBSS ensemble, the GRBLK and K2MY members

are worst members a larger percentage of the time (12%–

20%) than the other SBSSmembers, while the GFS-WRF

and SBSS control member are rarely the worst members

(,5%). The threeWRFmembers for the SBSS ensemble

are the worst less often on average than are the MM5

members, except for the SBSS control. The SIT-NYHOPS

after bias correction has one of the top three worst

member percentages at the Battery, Sandy Hook, and

Montauk stations (13%–19%), while the NOAA-ET

has a similar large percentage at the Long Island

Sound stations (19%–20%). Inspection of several indi-

vidual surge events revealed that the SIT-NYHOPS

tended to have 5%–10% larger surge maxima and min-

ima than did the SBSS members (not shown), which

helps the SIT-NYHOPS if the timing of the surge is

predicted well. As a result, the difference between the

SIT-NYHOPS during its best forecasts and the other

members during the same periods is the largest of any of

the models. The SIT-NYHOPS and ENS-3–BC also

finishes as second or third best member more than the

other models. On the other hand, after bias correction,

timing errors combined with this larger surge variance in

the SIT-NYHOPS simulation resulted in many forecasts

in which it was the worst. However, if the days in which

the SIT-NYHOPS are worst are compared with the days

in which the other models are worst, the SIT-NYHOPS

still had the lowest RMSEs. There are many forecasts in

which the SIT-NYHOPS’s errors are slightly larger than

the other models, while the other models have much

larger errors than SIT-NYHOPS when they are the

worst (not shown).

The rank histogram for the ALL ensemble for all

stations between 12 and 48 h is L shaped (Fig. 12), which

denotes a negatively biased ensemble that is under-

dispersed. Thus, the observation falls outside the en-

semble envelope a majority of the time (;60% for all

stations). These results are consistent with the clustering

of the SBSS deterministic verification above (Fig. 4a).

After applying a bias correction, the ensemble is moreU

shaped, which is less biased, but there is still under-

dispersion, with the observation falling outside the en-

semble;53%the time (Fig. 12).Additional postprocessing

(calibration) would be needed to reduce this under-

dispersion, such as Bayesian modeling averaging (Hoeting

et al. 1999), which has been shown to work well for tem-

perature (Wilson et al. 2007) and precipitation (Sloughter

et al. 2007) ensemble forecasts.

To determine the probabilistic skill of the ensemble,

the BS and BSS were calculated for each ensemble using

Eqs. (3) and (4) above, respectively. Each of these scores

is based on whether the observed and 12–48-h forecast

surges exceeded a set positive surge threshold (.0,

.0.1, .0.2, .0.3, .0.4 m; see Fig. 13). The BS in the

SBSS, ALL, and ENS-3 ensembles decreases (improves)

as the positive surge becomes larger (Fig. 13a), which

suggests that the probabilistic accuracy increases for the

larger surge events. For all thresholds except .0.4 m,

FIG. 11. (a) Percentage of time after bias correction that each

member in the SBSS ensemble, SIT-NYHOPS, NOAA-ET, ALL,

and ENS-3 performed the best (lowest 12–48-h-averaged RMSE)

in storm surge forecasts at each station. (b) As in (a), but for the

worst member for the SBSS, SIT-NYHOPS, and NOAA-ET.

There is no mean ensemble plotted for (b), since the mean cannot

be worst.
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the ALL ensemble has more accuracy than does the

SBSS ensemble, while the ENS-3 is better (smaller BS)

than the ALL ensemble. There is little improvement in

the BS after bias correction for the ALL–BC and ENS-

3–BC ensembles for the .0- and .0.1-m surges. Over-

all, these results illustrate that a multimodel ensemble

constructed using only a few different surge models can

yield more probabilistic accuracy on average than one

surge model ensemble (SBSS) that uses different at-

mospheric forcings. If the SBSS ensemble members

were just as skillful as the SIT-NYHOPS and NOAA-

ET members, then some of the benefits of including

different atmosphericwinds and pressuresmayhave been

more fully realized for this period of study.

The BSS was calculated relative to the best bias-

corrected member in the ALL ensemble (SIT-NYHOPS

member). There is positive skill across all thresholds for

the ALL and ENS-3 ensembles (Fig. 14a), while there is

only statistically significant positive skill for the SBSS

ensemble for the.0.1-m threshold. TheENS-3 has greater

skill than the ALL ensemble at all thresholds, but the

ENS-3 improvement for the .0.3-m thresholds is only

significant at the 90% level given the smaller sample for

these larger surges. There is some improvement in the

BSS after bias correction is applied for the .0.2-m thresh-

old, but it is not significant at the 90% level.

The BS was broken down into its reliability and reso-

lution (Table 3). Since the uncertainty is greater than the

BS for all ensembles, it can be seen that the ensembles

have a positive BSS compared to climatology, which is

defined as the uncertainty term (UNC above) in the Brier

score (Fig. 14b). All ensembles except ALL–BC and

SBSS have a positive BSS when climatology is used as

a reference for cases.0 m. The ENS-3 outperforms the

ALL ensembles for the .0-, 0.1-, 0.2-, and 0.3-m

thresholds, and there is little difference after bias cor-

rection (not statistically significant).

Figure 15 shows reliability diagrams for surge events

.0.3 m. The horizontal line refers to a climatological

relative frequency of a .0.3-m surge event, which rep-

resents an ensemble having no resolution. The topdiagonal

line represents an ensemble having perfect reliability,

while the bottom diagonal represents no reliability. For

probabilities less than 80%, both the SBSS and ALL

ensembles have smaller probabilities than are observed.

When the SBSS (ALL) ensemble predicts an event to

occur 25% (30%) of the time, the event actually occurs

;55% (70%) of the time for the SBSS (ALL) ensemble.

This issue continues for moderate-probability (.0.3 m)

events (0.4–0.7). For higher probabilities (.0.8), both

ensembles have forecast probabilities roughly equal to

the observed probability. There is a slight improvement

in the reliability after applying bias correction to the

members of the ALL ensemble. The ENS-3 ensemble is

the most reliable of all ensembles; thus, this combined

with the BSS results in Fig. 13 illustrates the benefit of

running a multimodel surge ensemble system. Bias cor-

rection helps make the ENS-3–BC ensemble even more

reliable than the raw, with the predicted probabilities

agreeing well with the observed relative frequency. For a

slightly larger storm surge event (.0.4 m), the ensembles

perform similarly although the sample size is smaller (not

shown).

5. Discussion and conclusions

For 74 days from November 2007 to March 2008 and

fromOctober toDecember 2008, an eight-member Stony

FIG. 12. Rank (Talagrand) histogram for all five stations using

the ALL ensemble (gray) as well as the bias-corrected ensemble

(black).
FIG. 13. BSs calculated for the SBSS,ALL,ALL-BC,ENS-3, and

ENS-3-BC ensembles for five positive surge thresholds. Table 3

shows the breakdown of the BS for the .0.3-m surge.
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Brook storm surge (SBSS) ensemble, Stevens Institute

hydrodynamic model (SIT-NYHOPS), and NOAA ex-

tratropical surge model (NOAA-ET) were verified for

five stations around New York City and Long Island.

The ensemble of all members (ALL), as well as a three-

member ensemble (ENS-3: SBSS control member, SIT-

NYHOPS, andNOAA-ET), were also evaluated for this

same time period. The SBSS ensemble consists of the

MM5 and WRF atmospheric members.

The raw NOAA-ET simulation has the largest nega-

tive bias (20.12 m), while the SIT-NYHOPS and SBSS

control members also have a slight negative surge bias

after hour 24. In addition, the ME of the SBSS members

does not increase with forecast time and the RMSE is

highest for hours 1–12, which suggests that the use of the

previous day’s forecast as the initialization for the SBSS

members has a negative impact early in the forecast.

Many of the underpredicted surges in the SBSS ensemble

are associatedwith highwave heights at an offshore buoy,

thus illustrating the potential importance of nearshore

waves (radiation stresses) on the surge predictions. A

5-day bias correction removes most of the surge bias in

the NOAA-ETmodel, thus bringing it closer to the best

deterministic model, SIT-NYHOPS, in terms of accuracy

(RMSE) for positive surges. Conversely, this bias cor-

rection did not generally improve the SIT-NYHOPS

and SBSS members. The multimodel surge ensemble

after bias correction (ENS-3–BC)has the best deterministic

accuracy as compared to all of the ensemble members

(except SIT-NYHOPS, which is similar) and the ALL

ensemble between hours 1 and 48. The ALL ensemble

has accuracy that is less than for NOAA-ET and SIT-

NYHOPS, since it is weighted more by the less accurate

SBSS members.

Probabilistically, the raw ALL ensemble is biased given

the L-shaped rank histogram, and after bias correction the

ALL ensemble is underdispersed (U shaped), with the

storm surge observations falling outside the ensemble

;53% of the time. Many of the atmospheric members

have similar wind accuracies on average, and this lack of

FIG. 14. As in Fig. 13, but for the BSS calculated relative to the

(a) SIT-NYHOPS model and (b) climatology.

TABLE 3. BSS components: reliability (REL), resolution (RES),

uncertainty (UNC), andBS for five ensemble configurations: SBSS,

ALL, ALL–BC, ENS-3, and ENS-3–BC ensembles for the.0.3-m

surge threshold.

REL RES UNC BS

SBSS 0.005 0.019 0.069 0.056

ALL 0.011 0.032 0.069 0.047

ALL–BC 0.007 0.032 0.069 0.043

ENS-3 0.002 0.030 0.069 0.040

ENS-3–BC 0.001 0.033 0.069 0.037

FIG. 15. Reliability diagram for .0.3-m threshold showing

the SBSS, ALL, ALL-BC, ENS-3, and ENS-3-BC ensembles.

The 1:1 line represents perfect reliability while the lower diago-

nal dashed line represents the line of ‘‘no skill’’ in a probability

forecast.
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wind dispersion is likely leading to some of this ensemble

underdispersion. Brier scores (BSs) and Brier skill

scores (BSSs) calculated for surge thresholds .0, .0.1,

.0.2, .0.3, and .0.4 m shows the benefits of including

ensemblemembers that use different oceanmodels. The

BSS was calculated relative to the best deterministic

member after ‘‘bias correction’’ (SIT-NYHOPS–BC).

The ALL ensemble improves upon the SBSS in terms of

BS and BSS even though 80% of the members of the

ALL ensemble consist of the SBSS. The ENS-3 has the

best BSs and BSSs for all surge thresholds compared to

theALL ensemble. The bias correction had only aminor

improvement (not statistically significant) on the BSs

and BSSs for the ALL–BC and ENS-3–BC simulations.

Reliability diagrams for surge events.0.3 m shows that

the SBSS and ALL ensembles are underconfident for

forecast probabilities of less than 0.8. The ENS-3 in-

creases the reliability even though the ensemble is only

three members, and the ENS-3-BC has a nearly perfect

reliability.

These results illustrate that there are biases in these

storm surge models that may or may not be corrected

with postprocessing, like the one used operationally for

NOAA-ET surge forecasts and adopted here (5-day

anomaly BC). For example, ADCIRC in the SBSS seems

to have trouble moving water in and out of the region.

This is seen through a composite of SLP for unique dates

between the 10 largest positive and negative error days

for SBSS control members at the Battery, Sandy Hook,

and King’s Point. ADCIRC tends to underpredict cy-

clone events while overpredicting offshore (negative

surge) events. This is not from a low MM5 or WRF bias

in surface wind speed or the surface drag formation (SIT-

NYHOPS applies a larger drag), but it may be the result

of running ADCIRC in two dimensions. The SBSS model

uses ADCIRC in a 2D configuration, which parameterizes

the bottom stress based on a depth-averaged velocity

within the water column. SIT-NYHOPS uses a 3D ocean

model (POM type) that includes a bottom layer velocity,

which is used to calculate the bottom stress. Weisberg

and Zheng (2008) found that 2D models overestimate

bottom stress compared to 3D models, which leads to

an underestimation of surge heights in 2D ocean mod-

els. Another potential impact neglected in all models is

the influence of wave radiation. It is shown that larger

wave heights at an offshore buoy tend to correspond

to larger negative error days for SBSS predictions at

the coast.

Overall, these results have shown the benefits of using

a multimodel surge prediction system. Both the proba-

bilistic skill and reliability are improved by using a few

different storm surge modeling systems simultaneously.

Thus, operational forecasters would benefit if surge

predictions from different ocean models could be com-

bined in real time, rather than using just one surgemodel

and an atmospheric ensemble. Individual model pre-

dictions are also continuously improving. For example,

since July 2010, the SIT-NYHOPS model includes off-

shore surge forcing from NOAA-ET at its continental

shelf break open boundary. This nesting of SIT-

NYHOPS into NOAA-ET was found to further re-

duce surge RMS errors at the coast significantly (not

shown). Meanwhile, additional research is needed ex-

ploring different bias-correctionmethods, coupled wave–

storm surge impacts, and storm surge ensembles for more

extreme surge events.
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Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-

Yamada level 2.5 scheme in the NCEP Meso Model. NCEP

Office Note 437, 61 pp.

Jelesnianski, C., J. Chen, andW. Shaffer, 1992: SLOSH: Sea, Lake,

and Overland Surges from Hurricanes. NOAA Tech. Rep.

NWS 48, 71 pp.

Jones, M., B. A. Colle, and J. Tongue, 2007: Evaluation of a short-

range ensemble forecast system over the northeast United

States. Wea. Forecasting, 22, 36–55.

Kain, J. S., 2004: The Kain–Fritsch convective parameterization:

An update. J. Appl. Meteor., 43, 170–181.

Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year

Reanalysis: Monthly means CD-ROM and documentation.

Bull. Amer. Meteor. Soc., 82, 247–268.

Large, W. G., and S. Pond, 1982: Sensible and latent heat flux

measurements over the ocean. J. Phys. Oceanogr., 12, 464–482.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A.

Clough, 1997: Radiative transfer for inhomogeneous atmo-

sphere: RRTM, a validate correlated-k model for the long-

wave. J. Geophys. Res., 102, 16 663–16 682.

Mukai, A., J. Westerink, R. Luettich, and D. Mark, 2002: East-

coast 2001: A tidal constituent database for the western

NorthAtlantic,Gulf ofMexico andCaribbean Sea. Coastal and

Hydraulics LaboratoryTech.Rep.ERDC/CHLTR-02-24,U.S.

Army Engineer Research and Development Center, 210 pp.

Mylne, K., R. Evans, andR. Clark, 2002: Multi-model multi-analysis

ensembles in quasi-operational medium-range forecasting.

Quart. J. Roy. Meteor. Soc., 128, 361–384.

Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal

harmonic analysis including error estimates in MATLAB us-

ing T_TIDE. Comput. Geosci., 28, 929–937.

Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit

forecasting of supercooled liquid water in winter storms using

the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124,

1071–1107.

Resio, D. T., and J. J. Westerink, 2008: Hurricanes and the physics

of surges. Phys. Today, 61, 33–38.

Shen, J., W. Gong, and H. Wang, 2005: Simulation of Hurricane

Isabel using the Advanced Circulation Model (ADCIRC).

Hurricane Isabel in Perspective, K. G. Sellner, Ed., Ches-

apeake Research Consortium, 107–116.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M.

Barker,W.Wang, and J. G. Powers, 2005: A description of the

Advanced Research WRF version 2. NCAR Tech. Note

NCAR/TN-4681STR, 113 pp.

Sloughter, J. M., A. E. Raftery, and T. Gneiting, 2007: Probabilistic

quantitative precipitation forecasting using Bayesian model

averaging. Mon. Wea. Rev., 135, 3209–3220.

Tilburg, C. E., andR.W.Garvine, 2004: A simplemodel for coastal

sea level prediction. Wea. Forecasting, 19, 511–519.

Weisberg, R. H., and L. Zheng, 2006: Hurricane storm surge sim-

ulations for Tampa Bay. Estuaries Coasts, 29, 899–913.

——, and——, 2008: Hurricane storm surge simulations comparing

three-dimensional with two-dimensional formulations based

on an Ivan-like storm over the Tampa Bay, Florida region.

J. Geophys. Res., 113, C12001, doi:10.1029/2008JC005115.

Westerink, J. J., R. A. Luettich Jr., and N. W. Scheffner, 1993:

ADCIRC: An advanced three-dimensional circulation model

for shelves coasts and estuaries. Report 3: Development of

a tidal constituent data base for the western North Atlantic

938 WEATHER AND FORECAST ING VOLUME 26



and Gulf of Mexico. Dredging Research Program Tech. Rep.

DRP-92-6, U.S. Army Engineers Waterways Experiment

Station, 154 pp.

——, and Coauthors, 2008: A basin- to channel-scale unstructured

grid hurricane storm surge model applied to southern Loui-

siana. Mon. Wea. Rev., 136, 833–864.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. Academic Press, 627 pp.

Wilson, L. J., S. Beauregard, A. E. Raftery, and R. Verret, 2007:

Calibrated surface temperature forecasts from the Canadian

Ensemble Prediction System using Bayesian model averaging.

Mon. Wea. Rev., 135, 1364–1385.

Woodcock, F., and C. Engel, 2005: Operational consensus fore-

casts. Wea. Forecasting, 20, 101–111.

Zhang, D., and R. A. Anthes, 1982: A high-resolution model of

the planetary boundary layer—Sensitivity tests and com-

parisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–

1609.

Zilkoski, D. B., J. H. Richards, and G. M. Young, 1992: Results

of the general adjustment of the North American Vertical

Datum of 1988. Surv. Land Info. Syst., 52, 133–149.

Zwiers, F. W., 1990: The effect of serial correlation on statistical

inferences made with resampling procedures. J. Climate, 3,

1452–1461.

DECEMBER 2011 D I L I BERTO ET AL . 939


