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ABSTRACT: The primary source of guidance used by the Storm Surge Unit (SSU) at the National Hurricane Center
(NHC) for issuing storm surge watches and warnings is the Probabilistic Tropical Storm Surge model (P-Surge). P-Surge is
an ensemble of Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model forecasts that is generated based on his-
torical error distributions from NHC official forecasts. A probabilistic framework is used for operational storm surge fore-
casting to account for uncertainty related to the tropical cyclone track and wind forcing. Previous studies have shown that
the size of a storm’s wind field is an important factor that can affect storm surge. A simple radius of maximum wind
(RMW) prediction scheme was developed to forecast RMW based on NHC forecast parameters. Verification results indi-
cate this scheme is an improvement over the RMW forecasts used by previous versions of P-Surge. To test the impact of
the updated RMW forecasts in P-Surge, retrospective cases were selected from 25 storms from 2008 to 2020 that had an ad-
equate number of observations. Evaluation of P-Surge forecasts using these improved RMW forecasts shows that the prob-
ability of detection is higher for most probability of exceedance thresholds. In addition, the forecast reliability is improved,
and there is an increase in the number of high probability forecasts for extreme events at longer lead times. The improved
RMW forecasts were recently incorporated into the operational version of P-Surge (v2.9), and serve as an important step
toward extending the lead time of skillful and reliable storm surge forecasts.

KEYWORDS: Storm surges; Hurricanes/typhoons; Ensembles; Operational forecasting;
Numerical weather prediction/forecasting

1. Introduction

The National Weather Service’s National Hurricane Center
(NHC) Storm Surge Unit (SSU) is responsible for issuing
storm surge forecasts and storm surge watches (possibility of
life-threatening inundation during the next 48 h) and warn-
ings (danger of life-threatening inundation during the next
36 h) during landfalling tropical cyclones affecting the U.S.
coastline. The SSU forecast responsibility includes saltwater
only, which can be pushed miles inland and into rivers and
bays due to the winds of a tropical cyclone. SSU storm surge
forecast products are available approximately 48–60 h prior
to the onset of hazardous conditions. Efforts are under way to
increase the lead time to 72 h, which will provide state and
local officials with additional guidance to make important
evacuation decisions.

A key source of guidance for operational storm surge fore-
casting at the NHC comes from the Probabilistic Tropical
Storm Surge model (P-Surge) (Taylor and Glahn 2008;
Glahn et al. 2009; Gonzalez and Taylor 2018), which is devel-
oped and maintained by the Meteorological Development

Laboratory (MDL). For storms threatening landfall in the
U.S. Gulf and East Coast, P-Surge is run every 6 h. The
P-Surge model relies on the Sea, Lake, and Overland Surges
from Hurricanes (SLOSH) hydrodynamic model (https://vlab.
noaa.gov/web/mdl/slosh), which was initially developed by
MDL more than 40 years ago (Jelesnianski and Taylor 1973;
Jelesnianski et al. 1992).

It has been well known for some time that storm surge is
sensitive to a storm’s track, intensity, size, and forward speed,
as well as the coastal characteristics of the landfall area (e.g.,
bathymetry) (e.g., Irish et al. 2008; Rego and Li 2009, 2010;
Fossell et al. 2017; Ramos-Valle et al. 2020; Xuan et al. 2021).
Since there is often a great deal of uncertainty related to the
meteorological forcing several days prior to landfall, the
P-Surge ensemble attempts to account for this uncertainty using
a probabilistic framework. The number of unique realizations
can vary from about 200–1200 depending on the storm RMW
and how the P-Surge ensemble tracks intersect the SLOSH
basins.

An example from Hurricane Laura (2020) illustrates the
utility of probabilistic track guidance and the danger of rely-
ing on a single-track deterministic forecast to assess storm
surge risk (Fig. 1). Results from a single-track deterministic
SLOSH forecast based on the NHC Official (OFCL) forecast
from Advisory 23 (1200 UTC 25 August; ;42 h prior to
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landfall) are shown relative to the North American Vertical
Datum of 1988 (NAVD88) in Fig. 1a. Based on this forecast,
landfall was expected near the Texas–Louisiana state line
and the area at greatest risk extended west of Cameron,

Louisiana, to the Sabine River. In reality, Hurricane Laura
made landfall closer to Cameron, or about 30 n mi (1 n mi 5
1.852 km) east of the position suggested by the Advisory 23
forecast track, and was 30 kt (1 kt’ 0.51 m s21) stronger than

FIG. 1. Single-track (deterministic) SLOSH simulations for Hurricane Laura (2020) referenced to above datum
(NAVD88) for (a) the NHC OFCL forecast (dashed line) initialized at 1200 UTC 25 Aug (;42 h prior to landfall)
and (b) the NHC “best track” (solid line). Circles denote observations that are colored according to the legend.
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forecast (130 vs 100 kt). Observations and a single-track simu-
lation based on the actual track (NHC best track) for Hurri-
cane Laura (Fig. 1b) indicate the area most heavily impacted
by storm surge was predominantly east of Cameron (Pasch
et al. 2021).

In contrast to the deterministic forecast, the 10% exceedance
guidance from the P-Surge forecast based on the 1200 UTC
25 August OFCL forecast (Fig. 2a) indicated there was a broad
area at risk for storm surge greater than 9 ft (1 ft 5 30.48 cm)
above NAVD88 (hereinafter above NAVD88 is just given as
NAVD88 for brevity) that extended from southeast Texas to
Vermilion Bay, Louisiana, including the area most heavily af-
fected. Based on the guidance available, a storm surge warning
was issued with Advisory 23 (https://www.nhc.noaa.gov/archive/
2020/al13/al132020.public.023.shtml) from San Luis Pass, Texas,
to the mouth of the Mississippi River (magenta shading in
Fig. 2b), while the coastal area from Freeport, Texas, to San Luis

Pass and from the mouth of the Mississippi River to Ocean
Springs, Mississippi, was placed under a storm surge watch (pur-
ple shading in Fig. 2b). This advisory also coincided with the issu-
ance of hurricane and tropical storm wind warnings (see Fig. 2b).

While the Hurricane Laura example highlights the sensitiv-
ity to the landfall location, uncertainty related to the storm’s
size is also an important component of P-Surge because it af-
fects the location and severity of storm surge (Irish et al. 2008;
Zhang et al. 2008; Davis et al. 2010; Forbes et al. 2014; Mayo
and Lin 2019). The sensitivity to storm size was demonstrated
following the deadly storm surge associated with the very
large wind field of Hurricane Katrina (2005) (e.g., Irish et al.
2008), and is considered in the NHC storm surge hazard map-
ping products (Zachry et al. 2015). In this paper, we discuss
the changes made in P-Surge v2.9 (implemented operationally
in May 2021; https://www.weather.gov/media/notification/
pdf2/scn21-41p_surge2.9.pdf), which include the use of RMW

FIG. 2. (a) 10% exceedance values (shading; see legend) from the P-Surge ensemble forecast (tracks shown in thin
solid lines) based on the 1200 UTC 25 Aug NHC OFCL forecast (dashed line) and (b) the corresponding storm surge
watch (purple) and warning (magenta) issued with this advisory. The thick solid line in (a) denotes the NHC best
track, and the lateral extents of the hurricane wind watch and hurricane wind warning along the coastline are indi-
cated in (b) by the green and gray lines, respectively. The box-outlined area corresponds to the region shown in
Fig. 1.
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forecasts based on NHC OFCL forecast parameters to im-
prove storm size information. Section 2 provides a description
of SLOSH and the P-Surge ensemble as well as the methodol-
ogy used to generate these RMW forecasts. Verification of
the RMW forecasts is shown in section 3. Section 4 presents
verification of P-Surge forecasts that use the improved RMW
forecasts and discusses the observation-based verification pro-
cedures that were used to evaluate the v2.9 and other P-Surge
upgrades. Additional discussion of these results is provided in
section 5, along with the conclusions.

2. Method

a. SLOSH/P-Surge

SLOSH is a 2D hydrodynamic model that solves a simpli-
fied set of Navier–Stokes momentum equations using finite
differencing on a semi-staggered Arakawa B-grid. The equa-
tions are integrated through the depth of the water column
(Glahn et al. 2009). Bottom friction is accounted for via uni-
form bottom slip coefficients for each SLOSH basin, and dis-
sipation is handled primarily through a vertical eddy viscosity
coefficient. Pressure, Coriolis, and frictional forces are used to
calculate the horizontal transport, which, along with a wetting
and drying algorithm, determines the surge at each grid cell
(Forbes et al. 2014). Water levels from tides are computed by
using tidal constituents from the Advanced CIRCulation
(ADCIRC) model (Szpilka et al. 2016), which are interpo-
lated to each SLOSH grid (Haase et al. 2011; Fritz (Haase)
et al. 2014).

SLOSH uses fixed computational grids, which, depending
on the geometry of the coastline, are either polar, elliptical, or
hyperbolic in shape. This allows for finer resolution near
coastal areas of interest, and coarser resolution over the open
ocean. While small-scale coastal features are generally better
resolved using unstructured grids, a great deal of effort is
spent retaining important subgrid-scale features in the
SLOSH basins, such as channels, levees, etc. Arakawa C-grid
cells are used to account for subgrid-scale features to simulate
one-dimensional flow.

The SLOSH model is computationally efficient, allowing
for thousands of simulations to be run within the 1-h opera-
tional time window on the NOAA Weather and Climate Op-
erational Supercomputing System (WCOSS). The SLOSH
model makes several simplifications to improve efficiency: the
advection and baroclinic terms are ignored, and the drag coef-
ficient for air and the eddy stress coefficient for water are held
constant (Glahn et al. 2009), the latter of which is being ac-
tively addressed.

As Fig. 1 illustrates, a small change in the storm track can
dramatically affect where the largest impacts from storm
surge will occur. Thus, the largest source of error for any
surge model generally comes from uncertainty related to the
meteorological forcing. To identify coastal areas at risk to
life-threatening storm surge, this uncertainty must be ade-
quately accounted for. In general, this requires a large ensem-
ble. While more sophisticated storm surge models exist,
SLOSH was selected as the hydrodynamic model for P-Surge

because it provides the best compromise between efficiency
and accuracy that allows the NHC to achieve its operational
forecasting objectives with finite computational resources.

To account for uncertainty in the NHC OFCL intensity fore-
cast, P-Surge uses a three-member ensemble (“weak,” “normal,”
and “strong”). The intensity of the medium-intensity storm is set
to the NHC OFCL intensity forecast. A normal error distribu-
tion is assumed using the 5-yr average error to determine the
perturbations for the weak and strong storms, which are cen-
tered at the 15th and 85th percentile of the intensity error distri-
bution, respectively. In this way the ensemble members are
designed to be representative storms of the lower 30%, middle
40%, and upper 30% of the assumed intensity error distribution.
Therefore, the weights applied to the intensity ensemble mem-
bers are 0.3, 0.4, and 0.3.

To account for uncertainty in the storm’s forward speed,
the ensemble includes seven tracks with different forward
speeds. The perturbations are generated similarly to the in-
tensity perturbations, except along-track error statistics are
used. Forward speed affects the timing of landfall, which can
either exacerbate or suppress the storm surge inundation de-
pending on the magnitude and timing of the tidal cycle, and
the duration of wind forcing near coastal areas.

The NHC OFCL cross-track errors are used to determine
the spread in the cross-track direction as a function of lead
time. The cross-track swath encompasses roughly 90% of the
uncertainty based on the 5-yr average error. Therefore, tracks
extend outside of the NHC track forecast cone, which is de-
signed to account for ;67% of the average uncertainty
(https://www.nhc.noaa.gov/aboutcone.shtml). Because of dif-
ferences in bathymetry and coastal characteristics, which can
affect inundation depth and extent (e.g., Weaver and Slinn
2010), it is vital to ensure that the entire coastal area threat-
ened by storm surge is adequately sampled. The cross-track
spacing is set so storm tracks are 1 RMW apart at 48-h lead
time, which means more cross-track ensemble members are
needed when the RMW is small.

P-Surge relies on the SLOSH parametric wind profile to de-
fine the atmospheric forcing for the SLOSH model forecasts.
The parametric wind model specifies the wind speed y as a
function of radius r and depends only on the radius, RMW,
and maximum wind speed Vmax:

y(r) 5 2:0 3 Vmax 3 RMW 3 r

RMW2 1 r2
:

P-Surge v2.7, which was upgraded in May 2018 (https://www.
weather.gov/media/notification/pdfs/scn18-36psurgeaaa.pdf),
and all previous versions of P-Surge used the observed (i.e.,
NHC best track) intensity, latitude, forward speed, and mini-
mum pressure to derive an initial RMW consistent with the
SLOSH parametric wind profile during the “spinup” phase of
the forecast (the 24-h period prior to the current synoptic
time). However, the pressure–wind–RMW relationship used
by P-Surge often resulted in an RMW that differed consider-
ably from the NHC estimate. Since RMW forecasts are not
provided as part of the NHC OFCL forecast, perturbations
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used to generate the three-member RMW ensemble (small,
medium, and large) were based on the average error resulting
from holding the RMW constant throughout the forecast
(Taylor and Glahn 2008). These perturbations were a function
only of the initial storm RMW and did not account for other
factors that are known to be related to storm RMW (intensity,
latitude, etc.).

P-Surge was upgraded to v2.8 in September 2020 (https://
www.weather.gov/media/notification/pdf2/scn20-81p-surge2.8.
pdf) to use the real-time best track intensity, latitude, forward
speed, and RMW to derive an initial minimum pressure con-
sistent with the SLOSH parametric wind profile during the
“spinup” portion of the forecast. Results from the P-Surge v2.8
scientific evaluation indicated this approach led to more reli-
able storm surge probabilities (not shown), since storm surge
forecasts appear to be more sensitive to small changes in
RMW than minimum central pressure. While this upgrade led
to better storm surge forecasts by improving the initial storm
structure, the forecast methodology for RMW did not change
for P-Surge v2.8. As a result, the RMW forecasts were often
unrealistic, such that the three-member ensemble failed to en-
compass the NHC estimates of RMW.

b. RMW forecasts

Since storm surge prediction relies on accurately represent-
ing storm size, it was desirable to try to improve the method
of forecasting RMW. To do this, the historical relationships
between RMW and other best track parameters available in

the NHC OFCL forecast were examined. Although RMW
values were not quality controlled as part of the poststorm
analysis until 2021, these data have been archived in the NHC
best-track files since 2001 and are provided to the nearest 5 n mi.
Since it is reasonable to assume that there is less uncertainty in
the best-track RMW at times coincident with aircraft reconnais-
sance, the RMW dataset used in this study were limited to syn-
optic times within 6120 min of aircraft reconnaissance (i.e.,
center fix). In addition, only storms with a classification of tropi-
cal depression, tropical storm, hurricane, subtropical depression,
or subtropical storm were included, which are the same set of
classifications used to select cases included in the NHC verifica-
tion reports (e.g., Cangialosi 2021). This yielded a sample size
of 1649 cases in the Atlantic basin from 2001 to 2019 (Fig. 3).

Willoughby and Rahn (2004) used aircraft reconnaissance
data from 23 hurricane seasons (1977–2000) to evaluate the
Holland (1980) hurricane wind model and found that latitude
and intensity could be used to predict RMW. However, their
statistical relationship only explained ;25% of the variance.
Vickery and Wadhera (2008) also used flight level data and
H*Wind “snapshots” (Powell et al. 1998) to develop a statisti-
cal model for RMW based on the central pressure deficit and
latitude. Knaff et al. (2015) also developed a linear regression
model for RMW that depends on latitude and intensity to esti-
mate tropical cyclone flight-level winds. While these previous
studies focused on flight-level winds, the RMW in this study is
obtained from the best-track dataset and is defined as the radius
of the maximum 1-min averaged wind at 10-m elevation.

FIG. 3. Best-track storm locations at synoptic times within6120 min of aircraft reconnaissance data. Circles are col-
ored according to the year, and the number of cases included for each year is shown in the legend. These data were
used to derive the relationship between RMW and other best-track parameters.
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Following the methodology of Willoughby and Rahn (2004),
Vickery and Wadhera (2008), and Knaff et al. (2015), the rela-
tionship between RMW and other best-track variables was in-
vestigated to determine whether they could be used to predict
RMW. Variables were included as predictors if there was a no-
table increase in the variance explained for any of the lead
times being evaluated. While some predictors did not make a
positive contribution at all lead times, we chose to keep the
predictor selection constant for simplicity. After several sets of
predictors were chosen for further evaluation, coefficients
were derived for each year of forecasts from 2001 to 2019 by
excluding data from the current year. For example, coefficients
for 2018 included data from 2001 to 2017 and 2019. These co-
efficients were then used to compute sets of RMW forecasts
from 2001 to 2019, which were evaluated in terms of error and
bias to select the predictors and coefficients for operational
forecasting. In addition to intensity and latitude, it was found
that the RMW value at the start of the forecast (persistence)
and the four-quadrant (nonzero) averages of the 34-, 50-, and
64-kt wind radii are also good predictors of RMW. A log-
transformation of the predictand and most of the predictors
(all except latitude) yielded the largest coefficient of determi-
nation R2. This resulted in a power-law relationship for pre-
dicting RMW. Chavas and Knaff (2022) also use the 34-kt
wind radii along with latitude and intensity to predict RMW at
10-m elevation. To estimate RMW, their model computes the
loss of angular momentum that is expected when moving radi-
ally inward from the 34-kt wind radius to the RMW. Their
methodology shows a lot of potential but was not available for
a comparison at the time that this RMW prediction model was
being developed.

Since wind radii forecasts are not always available (a
storm’s intensity may be below the corresponding wind speed
threshold, or the lead time is beyond when wind radii forecast

data are available), four sets of regression equations were
constructed to predict RMW depending on which forecast
wind radii are available (Tables 1–4). For example, the equa-
tion to predict RMW at the 36-h lead time when all wind radii
forecast predictors are available is

RMWt 5 RMW0:078
0 R0:117

34 R20:145
50 R0:825

64 V21:171
max e(4:91 0:006f),

where RMW0 is the initial RMW (n mi); R34, R50, and R64 are
the average (nonzero) 34-, 50-, and 64-kt forecast wind radii
(n mi), respectively; Vmax is the forecast intensity (kt); and f is
the forecast latitude (8). The R2 value is largest when all forecast
wind radii are available, although the number of forecasts used
to derive the coefficients is much smaller than when no wind ra-
dii data are used to predict RMW (i.e., cf. Tables 1 and 4).

Although wind radii estimates were not included in the
post-storm analyses prior to 2004 (Cangialosi and Landsea
2016), there is reason to believe that the wind radii values
listed in the best track are fairly reliable between 2001 and
2004 given the availability of QuikSCAT scatterometer data
starting in 2000 (e.g., Knaff et al. 2021). Since 2001, the 34-
and 50-kt wind radii forecasts were available out to the 72-h
lead time. Between 2001 and 2018, the 64-kt wind radii fore-
casts were available out to the 36-h lead time, but beginning
in 2019, they were extended to the 48-h lead time. Initial test-
ing revealed there were often discontinuities in the predicted
RMW values when the availability of the wind radii predictors
changed during the forecast. This was especially an issue at
the 84-h lead time when the 72-h RMW forecast that relied
on 34- and 50-kt wind radii was not consistent with the 84-h
forecast computed without wind radii data. To make the fore-
cast RMW values more consistent, the 34- and 50-kt wind ra-
dii forecast values were held constant from 72 to 120 h if the
forecast intensity was above the corresponding thresholds.

TABLE 1. Sample size N, coefficient of determination R2, and coefficients a0–a6 used to forecast RMW as a function of forecast
hour (label fhr) when all forecast wind radii are available. The predictors are listed under the coefficients a1–a6, where ln(RMW0) is
the natural logarithm of the initial RMW; ln(R34), ln(R50), and ln(R64) are the natural logarithms of the nonzero average 34-, 50-, and
64-kt forecast wind radii, respectively; ln(Vmax) is the natural logarithm of forecast intensity; f is the forecast latitude; and a0 is the
intercept. The regression coefficients were derived from Atlantic best-track data from 2001 to 2019 that were within 6120 min of
aircraft reconnaissance (see the text for details).

fhr N R2 a0 a1 ln(RMW0) a2 ln(R34) a3 ln(R50) a4 ln(R64) a5 ln(Vmax) a6 f

0 634 1.000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 631 0.749 3.1894 0.3524 0.1208 20.1091 0.5862 20.8070 0.0057
24 630 0.703 4.4373 0.1473 0.1045 20.1112 0.7566 21.0689 0.0061
36 620 0.695 4.9447 0.0784 0.1168 20.1448 0.8246 21.1709 0.0059
48 599 0.695 5.1818 0.0549 0.1335 20.2345 0.8972 21.2038 0.0063

TABLE 2. As in Table 1, but when only the 34- and 50-kt forecast wind radii are available.

fhr N R2 a0 a1 ln(RMW0) a2 ln(R34) a3 ln(R50) a5 ln(Vmax) a6 f

0 969 1.000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
12 958 0.750 3.1131 0.3680 0.1589 0.4710 20.9111 0.0068
24 926 0.693 4.1567 0.1834 0.2085 0.5873 21.1841 0.0073
36 876 0.673 4.6694 0.1062 0.2330 0.6295 21.3122 0.0074
48 808 0.655 4.9434 0.0459 0.3027 0.5828 21.3675 0.0079
72 674 0.652 4.7906 0.0157 0.3953 0.5321 21.3617 0.0067
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The first step to compute the RMW forecast is to determine
which wind radii forecast data are available (if any), and se-
lect the corresponding regression equation. Prior to applying
the coefficients, the NHC OFCL forecast parameters (lati-
tude, intensity, and wind radii) are bias corrected based on
verification results from the most-recent five years. After ap-
plying the bias correction and coefficients, a 3-point smooth-
ing function is used to smooth the forecasts in time since
discontinuities can arise if the input parameter availability
changes during the forecast. A lower and upper limit of ac-
ceptable RMW forecast values is set to 5 and 120 n mi, respec-
tively. The lower limit corresponds to the smallest RMW
values listed in the NHC best track, and the upper limit was
chosen by considering past storms that exhibited predomi-
nantly tropical characteristics.

While the along-track, cross-track, and intensity perturba-
tions used to generate P-Surge ensemble members are com-
puted based on assuming a normal error distribution, that
assumption was not made for RMW. To generate the three-
member P-Surge RMW ensemble, a cumulative error distribu-
tion was constructed from 10 years of retrospective forecasts
using the RMW regression equations. Only forecasts initial-
ized over water were included in the statistics, and to provide
additional weight to more recent forecasts, the latest 5-yr pe-
riod of forecasts was double counted in the cumulative error
distribution. The ensemble perturbations are then generated
based on the 15th (large), 50th (medium), and 85th (small)
percentile of the cumulative distribution.

To calculate the total weight for each realization, the cross-
track, along-track, intensity, and RMW weights for each reali-
zation are then multiplied together. It is important to note
that different error statistics are used to generate the P-Surge
ensemble perturbations for storms with an initial intensity of
,50 kt, 50–95 kt, and .95 kt. Binning the error statistics
based on the storm’s initial intensity is a step toward better

matching the ensemble spread with the expected uncertainty
of the current forecast.

3. Verification of RMW forecasts

P-Surge track and RMW forecasts are shown in Fig. 4 for
Hurricane Laura (2020) at 0600 UTC 22 August. It is appar-
ent from Fig. 4b that the RMW forecast values from P-Surge
v2.7 were much too small at the start of the forecast (;12 n
mi vs 100 n mi in the NHC best track). By 48 h, the v2.7
RMWs were in better agreement with the best-track values.
Laura had intensified considerably by this point and the
RMW had decreased to about 25 n mi. Since P-Surge v2.8 is
initialized using the best track, the RMWs from v2.8 (Fig. 4c)
are in better agreement with the best-track RMW during the
early stages of the forecast. However, the RMWs remain
much too large throughout the forecast period. The RMWs
from P-Surge v2.9 (Fig. 4d) do a much better job of encom-
passing the verifying RMW for this forecast, since the evolv-
ing characteristics of the storm are used to predict RMW.

Verification results from five years (2015–19) of retrospec-
tive RMW forecasts are shown for the medium-sized RMW
ensemble members in Fig. 5. The v2.7 forecasts have the larg-
est MAE (Fig. 5a), which is not surprising since, as discussed
previously, the RMW values in v2.7 are derived from the less
sophisticated method of using the pressure–wind–RMW rela-
tionship in the SLOSH model. The RMW forecasts from v2.8
are much improved from those of v2.7 during the early part of
the forecast since the RMW forecast is initialized from the
best-track value. By 60 h, the MAE of v2.8 is very similar to
v2.7, likely because both versions use the same forecast
method that depends only on the initial RMW. While the
MAE of the v2.9 forecasts is very similar to v2.8 at 0 and 12 h,
the v2.9 forecasts are considerably better than v2.8 through-
out the remainder of the forecast period.

A comparison of the bias in the RMW forecasts (Fig. 5b)
indicates that there is a considerable reduction in the negative
bias from v2.7 to v2.8. The RMW forecasts of v2.7 were, on
average, 15 n mi too small at the start of the forecast. The v2.8
and v2.9 RMW forecasts also exhibit a negative (small) bias,
but to a far lesser degree. Relative to v2.8, the greatest im-
provement in bias for v2.9 occurs from 48 h onward.

It is important to note that changes to RMW also affect the
outer wind profile (i.e., r. RMW) since the SLOSH paramet-
ric wind model does not allow for the outer wind profile to be
adjusted separately via a size parameter. To evaluate how the
changes to RMW affected the outer wind profile, the 34-kt
wind radii from the SLOSH parametric wind model were

TABLE 3. As in Table 1, but when only the 34-kt forecast wind radii are available.

fhr N R2 a0 a1 ln(RMW0) a2 ln(R34) a5 ln(Vmax) a6 f

0 1551 1.000 0.0000 1.0000 0.0000 0.0000 0.0000
12 1484 0.755 2.6272 0.4230 0.6320 20.9117 0.0064
24 1372 0.684 3.6525 0.2142 0.8222 21.2158 0.0082
36 1227 0.653 4.2822 0.0884 0.9059 21.3656 0.0091
48 1099 0.637 4.7700 20.0042 0.9225 21.4349 0.0102
72 862 0.633 4.7307 20.0365 0.9153 21.3882 0.0086

TABLE 4. As in Table 1, but when no forecast wind radii are
available.

fhr N R2 a0 a1 ln(RMW0) a5 ln(Vmax) a6 f

0 1649 1.000 0.0000 1.0000 0.0000 0.0000
12 1548 0.654 2.1633 0.6360 20.3314 0.0154
24 1416 0.499 3.7884 0.3953 20.5738 0.0219
36 1259 0.417 5.0213 0.1999 20.7481 0.0276
48 1123 0.392 5.8092 0.0615 20.8508 0.0318
72 875 0.394 6.3321 20.0362 20.9079 0.0343
96 691 0.411 6.6181 0.0041 20.9599 0.0295

120 565 0.382 6.7073 20.0028 20.9478 0.0257
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FIG. 4. Operational P-Surge (a) track and (b)–(d) RMW forecasts from different P-Surge
versions for Hurricane Laura (2020) initialized on 0600 UTC 22 Aug 2020. The red, green, and
blue track forecasts in (a) correspond to the small, medium, and large storms, respectively, that
make up the P-Surge RMW ensemble. The number of tracks in each RMW group is shown in
the legend in (a). The small-, medium-, and large-RMW forecasts are shown for P-Surge v2.7 in (b),
P-Surge v2.8 in (c), and P-Surge v2.9 in (d), along with the verifying best-track RMW (black).
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compared with the four-quadrant (nonzero) average 34-kt
wind radii from the best track for P-Surge v2.7, v2.8, and v2.9
(Fig. 6). Storm motion was not accounted for in the SLOSH
parametric wind profiles, so the MAE and bias of the P-Surge
versions should be compared in a relative sense. The MAE of
the 34-kt wind radii (Fig. 6a) is smallest for v2.9 at all lead
times. The MAE of v2.8 is similar to v2.9 initially but in-
creases with lead time and is similar in magnitude to v2.7 by
the 60-h lead time. In terms of bias (Fig. 6b), the 34-kt wind
radii of v2.7 has a large negative bias at all lead times. The
biases of v2.8 and v2.9 are also negative but are much smaller
in magnitude. The magnitude of the negative bias for v2.9 is
slightly larger than v2.8 at early lead times, but they are simi-
lar in magnitude from 48 to 96 h. Not surprisingly, the MAE
and bias of the 34-kt wind radii are similar in pattern to the

RMW MAE and bias (Fig. 5), indicating that the improve-
ments to RMW also translate to the outer wind field for
P-Surge v2.9.

4. Verification of probabilistic storm surge forecasts

To objectively evaluate the three different versions of P-Surge
guidance (v2.7, v2.8, and v2.9), we designed an observationally
based verification system using a 25-storm dataset from 2008 to
2020. The verification methodology presented here uses only
in situ observations from the NOAA Center for Operational
Oceanographic Products and Services (CO-OPS; NOAA/NOS
CO-OPS 2021) tide stations and USGS (U.S. Geological Survey
2021) water level sensors that are predeployed prior to landfall.
CO-OPS provides water level measurements at a fixed network

FIG. 5. (a) Mean absolute error and (b) bias of retrospective RMW forecasts from 2015 to 2019 from P-Surge v2.7 (red),
v2.8 (blue), and v2.9 (green). Error bars indicate the 95% confidence interval.
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of coastal tide stations (https://tidesandcurrents.noaa.gov). The
water level measurements are recorded every ;6 min and were
retrieved from CO-OPS referenced to the NAVD88 datum,
which allowed for a direct comparison with P-Surge output. The
CO-OPS tide station data within ;300 km of the most-heavily
impacted areas are included in the verification for an event.
Coverage for the USGS water level sensor networks vary for
each storm (https://stn.wim.usgs.gov/FEV/). These sensors re-
cord water level measurements every ;30 s referenced to
the NAVD88 datum. Data were postprocessed by the USGS
using a low-pass filter to remove wave noise.

Observations were collected for the duration of each event,
and the peak observed value was identified (Table 5). A map

and histogram of the observations used in this study are pro-
vided in Fig. 7. For context, the NHC generally considers in-
undation greater than 3 ft above ground level to be life
threatening. With no published “ground level” height at each
tidal station, the NWS Tropical Cyclone Products Directive
recommends using the tidal datum Mean Higher High Water
(MHHW) for measuring and communicating inundation at
the immediate coastline (NWS 2023). While 0 ft MHHW may
be the average highest high tide at a tidal station for a tidal
day and serves as a threshold where inundation begins, a wa-
ter level of 3 ft MHHW is a significant departure and suggests
nearby flooding on normally dry ground. For most CO-OPS
tidal stations used in this study, water level observations of

FIG. 6. (a) Mean absolute error and (b) bias of the average 34-kt wind radii based on retrospective RMW forecasts
from 2015 to 2019 from P-Surge v2.7 (red), v2.8 (blue), and v2.9 (green). Error bars indicate the 95% confidence
interval.
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6 ft NAVD88 are greater than 3 ft MHHW. Observations 6 ft
NAVD88 and greater account for approximately 40% of the
total observations in this study. Approximately 10% of all ob-
servations included in this verification study are greater than
9 ft NAVD88. It is important to note that the NHC does not
currently provide a gridded analysis product that combines
numerical simulations with storm surge observations as part
of its poststorm assessment; otherwise, an analysis of this type
could be used for verification purposes.

The quality of storm surge observations can vary consider-
ably across storms. The peak inundation for an event is often
missed by in situ networks due to sensors being spaced too far
apart and the instrumentation can fail during extreme condi-
tions. High-water marks determined from debris or stain lines
can help deduce the peak inundation after an event and can
be used to estimate how representative the sensor observa-
tions were of the peak values and areal extent. For example,
the peak inundation observed by the CO-OPS network during
Hurricane Laura (2020) was 9.2 ft MHHW at the Calcasieu
Pass (Pasch et al. 2021), which is south of Cameron. However,

a high-water mark survey conducted by the USGS in an area
hardest hit by Laura’s storm surge found evidence of water
17.1 ft above ground near Creole, Louisiana. Conversely, a
sensor may be located much closer to the peak of an event.
During Hurricane Michael, a USGS water level sensor de-
ployed at Mexico Beach, Florida, reported a filtered water
level of 15.55 ft NAVD88, which equates to approximately
14.7 ft MHHW. The wave action added to the damage,
leaving Mexico Beach with many buildings reduced to their
foundation (i.e., “slab cases”). High-water marks collected
from the structures left behind provided additional evidence
of 14 ft of inundation (Beven et al. 2019). Unfortunately,
high-water mark surveys are not always possible if the area is
inaccessible to survey crews, and although high-water mark
assessments aim to measure the still water level, they may be
contaminated by waves. Because of the subjectivity related to
high-water marks, they were not included in this study.

For operational forecasting, P-Surge probabilities are as-
sessed using two different approaches: (i) the probabilities
of exceeding certain thresholds (e.g., .3, .6, and .9 ft

TABLE 5. List of forecasts included in the set of P-Surge retrospective forecasts for each case. Two sets of forecasts are analyzed
for Irene (2011) and Matthew (2016) since multiple landfalls (or close approaches to land) occurred. Forecasts were selected for
evaluation based on the forecast landfall time; forecasts with landfall times closest to the 72-, 60-, 48-, 36-, 24-, and 12-h lead times
were included in the set of retrospectives. Forecast advisory numbers are listed for each forecast along with the assigned lead time
prior to landfall. The time of landfall and storm intensity at landfall are from the HURDAT2 database (Landsea and Franklin 2013).
The RMW values at landfall were interpolated from the NHC best track to the HURDAT2 landfall times. Maximum water level is
the highest observation collected for verification relative to the NAVD88 datum. The number of observations used for each case is
also listed in the table. Here, ATCF ID indicates Automated Tropical Cyclone Forecasting system identifier.

Hours prior to landfall
advisory No.

Landfall
(UTC time and date)

Intensity
(kt)

RMW
(n mi)

Max water level
(ft above NAVD88)

No. of
observationsStorm name ATCF ID 72 60 48 36 24 12

Gustav AL072008 21 23 25 27 29 31 1500 1 Sep 90 25 14.3 47
Ike AL092008 38 40 41 43 45 47 0700 13 Sep 95 30 16.2 66
Irene1 AL092011 19 21 22 24 25 28 1200 27 Aug 75 45 8.8 68
Irene2 AL092011 22 24 25 27 29 31 0935 28 Aug 60 100 9.9 105
Isaac AL092012 21 22 24 26 29 31 0800 29 Aug 70 40 14.1 109
Sandy AL182012 20 22 24 26 28 29 2330 29 Oct 70 110 16.7 153
Hermine AL092016 5 7 11 13 15 18 0530 2 Sep 70 25 9.6 9
Matthew1 AL142016 26 28 31 33 34 36 0000 7 Oct 115 15 8.4 47
Matthew2 AL142016 32 33 35 37 38 40 1500 UTC 8 Oct 75 25 8.7 109
Harvey AL092017 12 14 16 19 20 22 0300 26 Aug 115 15 9.5 26
Irma AL112017 34 36 39 42 44 46 1930 10 Sep 100 15 8.3 50
Nate AL162017 5 7 8 10 12 14 0520 8 Oct 65 25 8.4 22
Florence AL062018 50 52 54 55 57 59 1115 14 Sep 80 20 11.3 112
Gordon AL072018 } 1 3 6 8 10 0315 5 Sep 60 20 4.1 9
Michael AL142018 6 7 9 11 13 15 1730 UTC 10 Oct 140 10 15.6 27
Barry AL022019 3 4 5 7 9 11 1500 13 Jul 65 40 8.9 14
Dorian AL052019 40 42 45 47 49 51 1230 6 Sep 85 25 7.8 66
Cristobal AL032020 15 16 18 20 22 24 2200 7 Jun 45 90 6.9 17
Hanna AL082020 1 2 4 7 9 11 2200 25 Jul 80 20 6.6 22
Isaias AL092020 17 19 21 23 25 26 0310 4 Aug 80 20 8.7 44
Laura AL132020 18 20 22 24 26 28 0600 27 Aug 130 15 10.1 28
Marco AL142020 } } 10 13 15 17 1800 24 Aug 40 50 3.6 14
Sally AL192020 6 8 10 14 17 19 0945 16 Sep 95 20 6.5 18
Beta AL222020 8 9 11 12 13 16 0245 UTC 22 Sep 45 20 6.3 32
Delta AL262020 10 11 14 16 18 20 2300 9 Oct 85 20 9.8 32
Zeta AL282020 5 8 10 12 14 16 2100 28 Oct 100 25 9.2 17
Eta AL292020 } } 43 44 45 47 0920 12 Nov 45 30 4.7 7
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NAVD88) are used to assess vulnerability, especially at point
specific locations such as levees or other critical infrastructure,
and (ii) the storm surge values associated with certain prob-
ability of exceedance thresholds. The 10% probability of ex-
ceedance values (e.g., Fig. 2a) are considered to be a
reasonable worst-case scenario at a given location and are
used to generate the potential storm surge flooding map
(not shown) and guide the storm surge watch/warning (e.g.,
Fig. 2b), which are public-facing products available on the

NHC website. Because of the relevance to operational fore-
casting, the evaluation of model performance in this study
will focus on the probabilities of exceeding 6 and 9 ft
NAVD88, with an emphasis on the 10% exceedance thresh-
old. To reduce errors introduced by datum conversions, the
verification set includes observations and P-Surge products
relative to the NAVD88 datum only. At present, NHC op-
erational storm surge products do not include timing infor-
mation. Therefore, for simplicity, the maximum forecast

FIG. 7. Storm surge observations used for verification purposes in this study. Observations are from CO-OPS tide
stations and USGS water level sensors. (a) Observation locations, colored according to the maximum observed value
relative to the NAVD88 datum (see legend). (b) A histogram of the maximum observed values.
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values are verified against the peak observation at a given
location irrespective of time.

Since the time of landfall is often different from one fore-
cast to the next, the P-Surge retrospective runs were chosen
based on the time of landfall inferred from the NHC OFCL
forecasts, rather than when the forecasts were initialized rela-
tive to the actual landfall time. (i.e., the forecasts with landfall
closest to the 0-, 12-, 24-, 36-, 48-, 60-, and 72-h lead times
were included in the retrospective set for each event). This al-
lows for an evaluation of the forecasts stratified by lead time.
For most storms, seven retrospective P-Surge forecasts were
conducted for each model configuration included in the evalu-
ation. However, since landfall did not occur in all forecasts
and storm formation sometimes occurred within 72 h of land-
fall, three cases do not have forecasts at all lead times prior to
landfall. Furthermore, several additional runs were needed
for storms that moved parallel to the coast (i.e., Hurricanes
Irene and Matthew). For these cases, landfall was more
loosely defined as the time/location of the storm’s closest ap-
proach to land. Table 5 provides the advisory number corre-
sponding to each lead time as well as the best-track intensity
and RMW at landfall for each retrospective case.

An example of how the probability of exceeding 6 ft
NAVD88 changes with lead time is shown in Fig. 8 from sev-
eral P-Surge v2.9 forecasts for Hurricane Laura. At 72 h prior
to landfall (Fig. 8a), probabilities between 0% and 20% cover
a large area, from approximately Port Fourchon, Louisiana,
to Galveston Bay, Texas. Probabilities of 20%–40% extend
over western Louisiana, and there is a small area north of
Vermilion Bay with probabilities between 40% and 60%. At
60 h prior to landfall (Fig. 8b), the 0%–20% and 20%–40%
probability areas are similar to the forecast initialized 12 h
prior. However, the area with 40%–60% probabilities has
expanded and extends along the coast to near Cameron. By
24 h prior to landfall (Fig. 8c), the probabilities over western
Louisiana have increased significantly; there is now a small
area with 80%–100% probabilities near the coast between
Cameron and Vermilion Bay. Figure 8 illustrates that at lon-
ger lead times, probabilities for extreme events are generally
low, but will increase for some locations leading up to landfall.
This is the nature of probabilistic forecasting. Beyond 72 h,
probabilities are generally too low to be meaningful for deci-
sion makers, so the NHC advises users to consult storm surge
composite risk maps (Zachry et al. 2015).

Point observations were matched to the 625-m gridded
P-Surge output by identifying the maximum value from a
“neighborhood” of 5 3 5 grid points surrounding the grid
point associated with the observation’s location. The fore-
cast–observation pairs were used to create relative operating
characteristic (ROC) diagrams (Mason 1982) to determine
whether the forecast exceedances can discriminate between
events and nonevents (i.e., between storm surge greater than
6 ft NAVD88 and storm surge less than 6 ft NAVD88). For
this approach, a contingency table is defined with respect to
each probability threshold. For example, when evaluating the
probability of storm surge greater than 6 ft, the contingency
table for the 10% probability of exceedance is defined as
follows:

• forecast probability of exceedance $ 10% and observed
storm surge $ 6 ft is a hit,

• forecast probability of exceedance , 10% and observed
storm surge $ 6 ft is a miss,

• forecast probability of exceedance $ 10% and observed
storm surge , 6 ft is a false alarm, and

• forecast probability of exceedance , 10% and observed
storm surge , 6 ft is a correct negative.

The probability of detection (POD) and false alarm rate (FAR)
can be calculated from the contingency table as POD 5 hits/
(hits1 misses) and FAR5 false alarms/(false alarms1 correct
negatives). The POD–FAR pairs from all storms are plotted for
increasing probability of exceedance thresholds to create ROC
curves for each P-Surge version (Fig. 9). The ROC area under
the curve (AUC) is used as a measure of skillfulness (e.g., Wilks
2006), where a perfect score is equal to 1 and a score below 0.5
is considered a “no skill” forecast. In general, the AUC in-
creases as the lead time decreases, which is to be expected, since
in general, the error of the input forecasts of track, intensity,
and RMW increase with lead time. Improvements in skill for
v2.8 relative to v2.7 are most notable at 12–36 h prior to land-
fall, but skill in both versions begins to drop off after 48 h as the
POD decreases. Improvements in v2.9 over v2.8 and v2.7 are
most evident 48–72 h prior to landfall when the POD is higher
at comparable exceedance thresholds.

Figure 10 provides the 60- and 72-h ROC comparisons and
indicates that P-Surge v2.9 has a greater skill (AUC) than
v2.7 and v2.8 at both of these lead times. Confidence intervals
were calculated at the 95% confidence level for the 10% and
30% exceedance thresholds following Wilks (2006), and re-
veal that the differences between the POD/FAR pairs of v2.9
and v2.7 are statistically significant. Looking at the 10% prob-
ability of exceeding 6 ft NAVD88 for 60 h prior to landfall
(Fig. 10a), the POD for v2.9, v2.8, and v2.7 is 0.8, 0.75, and
0.65, respectively. The corresponding FAR pair is highest in
v2.9, but it is important to consider that the NHC’s mission of
protecting life is more sensitive to misses than false alarms.
While there is increased skill for v2.9 over the other versions
at 72 h (Fig. 10b), the POD drops off quickly after the 10%
probability of exceedance threshold, resulting in a reduction
of the AUC relative to at 60 h. Not only does the AUC in-
crease in v2.9 relative to v2.7 and v2.8, but the location of the
various probability of exceedance thresholds changes on the
ROC diagram between versions. For example, at 60 h the 20%
probability of exceeding 6 ft NAVD88 in v2.9 has a similar
FAR, but a higher POD when compared with the 10% proba-
bility of exceedance in v2.7 (Fig. 10a). The ROC curves, like
those in Figs. 9 and 10, can help guide the SSU’s decision to
use a particular exceedance value when determining storm
surge watches and warnings. Currently, the 10% exceedance
value is used in an attempt to reduce overwarning (i.e., false
alarms), without compromising the POD.

While the ROC diagram describes the ability of the model
to discriminate between events and nonevents, the Threat
Score (TS) indicates how well the “yes” forecasts correspond
to observed events. The TS metric falls out of the contingency
table discussed above:
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TS 5 hits/(hits 1 misses 1 false alarms),
and a perfect score is equal to 1. Figure 11 shows the 48-, 60-,
and 72-h TS associated with the probability of storm surge ex-
ceeding 6 ft NAVD88. At these lead times, the v2.9 forecasts

have the largest TS at almost all probability thresholds, fol-
lowed by v2.8 and v2.7. A similar pattern exists at shorter lead
times (not shown). The maximum TS for v2.9 occurs at the
30%, 20%, and 10% probability of exceedance for the 48-,
60- and 72-h lead times, respectively, while the maximum TS

FIG. 8. Probability of exceeding 6 ft NAVD88 from P-Surge v2.9 forecasts for Hurricane Laura (2020) initialized at
(a) 0600 UTC 24 Aug (;72 h prior to landfall), (b) 1800 UTC 24 Aug (;60 h prior to landfall), and (c) 0600 UTC
26 Aug (;24 h prior to landfall). Red and black stars respectively indicate observations greater than and less than 6 ft
NAVD88.
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for v2.7 is at the 10% probability threshold at each of the as-
sociated lead times. The improvement in the TS of v2.9 rela-
tive to v2.7 is a result of more hits and fewer misses, but v2.9
does exhibit more false alarms. For example, at the 60-h
lead time (Fig. 11b) for the 30% probability of exceeding 6
ft NAVD88, the number of hits for v2.9 and v2.7 are 273
and 145, respectively.

Reliability diagrams are used to evaluate the usefulness of
the forecast probabilities. Forecast probabilities of an event
are binned (0%–20%, 20%–40%, 40%–60%, 60%–80%, and
80%–100%), then the corresponding observed relative fre-
quency is calculated for each bin. Perfect reliability occurs
when the observed relative frequency and forecast probabilities
are equal, resulting in a line along the diagonal in the reliability

FIG. 9. Relative operating characteristic curves for various prob-
ability thresholds of exceeding the 6 ft NAVD88 (e.g., 0.1 5 10%
probability of exceedance) for (a) P-Surge v2.7, (b) P-Surge v2.8,
and (c) P-Surge v2.9. The ROC curves are colored by the lead
times shown in the legend. The x axis is the false alarm rate, and
the y axis is the probability of detection.

FIG. 10. As in Fig. 9, but results from each P-Surge version are
shown on the same figure (see legend) for (a) 60 and (b) 72 h prior
to landfall. Gray boxes indicate the 95% confidence interval (see
the text for details).
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diagram. Figure 12 shows reliability diagrams for both the prob-
abilities of storm surge greater than 6 and 9 ft NAVD88 at 60 h
prior to landfall. While all versions tend to underforecast (i.e.,
forecast probabilities are lower than the observed relative fre-
quency), there is improvement in the v2.9 forecast reliability rel-
ative to v2.7 at 60 h prior to landfall. Note that v2.9 more
frequently forecasts high probabilities of greater than 6 and 9 ft
NAVD88 (see the bin counts at the bottom of each diagram in
Fig. 12).

5. Discussion and conclusions

Past studies have shown that storm size can have an impor-
tant effect on the resulting storm surge (e.g., Irish et al. 2008).
Previous versions of P-Surge relied on a relationship between
storm intensity, latitude, forward speed, minimum pressure,
and RMW that often resulted in RMW values that did not
match up well with NHC best-track values. Based on forecast-
ing experience and participation in U.S. Integrated Ocean
Observing System (IOOS) community modeling testbeds
(Kerr et al. 2013; Joyce et al. 2019), it became a priority to im-
prove the storm size forecasts used by P-Surge. While the up-
grade to P-Surge v2.8 did result in improvements to the storm
structure at early lead times by using RMW values from the
NHC best track to initialize the P-Surge forecast, there was
little benefit at medium to extended lead times, since the

RMW forecast methodology was not changed with the v2.8
upgrade.

To improve how storm size is represented in the P-Surge
forecasts, regression equations for RMW were developed that
use NHC OFCL forecast parameters as predictors, including
latitude, intensity, and wind radii. Verification results from a
5-yr sample (2015–19) of retrospective RMW forecasts indi-
cate that the RMW forecasts based on NHC OFCL forecast
parameters are more accurate in terms of MAE and bias than
the RMW forecasts used in previous versions of P-Surge (v2.8
and prior). Based on a comparison of the MAE of the average
34-kt wind radii, these RMW forecasts also result in an im-
provement to the SLOSH parametric wind profile that ex-
tends beyond the RMW.

FIG. 11. Threat score for a range of probabilities of exceeding
the 6 ft NAVD88 (e.g., 0.1 5 10% probability of exceedance) at
(a) 48-, (b) 60-, and (c) 72-h lead times for P-Surge v2.7 (red), v2.8
(blue), and v2.9 (green).

FIG. 12. Reliability diagrams for the probability of exceeding the
(a) 6 ft NAVD88 and (b) 9 ft NAVD88 for forecasts 60 h prior to
landfall from the different P-Surge configuration included in the
evaluation (see legend).
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To evaluate whether the improved RMW forecasts would
translate to improvements in P-Surge, retrospective forecasts
were selected for 25 storms between 2008 and 2020. Forecasts
with landfall times closest to the forecast hours of 72, 60, 48,
36, 24, and 12 h were included in the analysis for each case.
Observations from CO-OPS tide stations and USGS water
level sensors were used to verify forecasts from three different
versions of P-Surge: (i) RMW initialization based on the
SLOSH parametric wind profile with RMW forecasts that
were a function only of the initial RMW (P-Surge v2.7),
(ii) initialization of RMW from the NHC best track with
RMW forecasts that were a function only of the initial RMW
(P-Surge v2.8), and (iii) initialization of RMW from the NHC
best track with RMW forecasts based on NHC forecast pa-
rameters (P-Surge v2.9). P-Surge v2.9 forecasts have a higher
POD for events greater than 6 ft NAVD88 for all probability
of exceedance thresholds. Based on a comparison of the ROC
area under the curve, this corresponds to an increase in skill
relative to P-Surge v2.7 and v2.8. P-Surge v2.9 is also more re-
liable for forecasts greater than 6 ft NAVD88. In May 2021,
the operational version of P-Surge was upgraded to incorpo-
rate the improved RMW forecasts.

An encouraging difference between P-Surge v2.9 and the
previous versions included in the comparison is that v2.9 had
a greater number of high-probability forecasts for life threat-
ening events (greater than 6 and 9 ft NAVD88) at longer lead
times (60–72 h). While false alarms are still an issue, the abil-
ity to forecast such events at longer lead times is a significant
improvement and, it is hoped, will lead to an increase in fore-
caster confidence when a high-impact event is likely to occur.
With effective messaging, it is perhaps more desirable that the
POD increase at the expense of a higher FAR, rather than
having a reduction in both the FAR and POD.

A major challenge related to evaluating the P-Surge fore-
casts is the limited number of observations that were available
for verification. For some storms, there were only a handful of
sensors within the area most heavily affected by storm surge
(see Table 5). Clearly, a denser network of high-quality storm
surge observations is needed. Therefore, the verification re-
sults pertaining to the peak forecast values need to be inter-
preted conservatively. Furthermore, this undersampling issue
also made it impractical to verify the areal extent of the differ-
ent probability of exceedance thresholds, especially since most
of the observations were located very near the coast.

Efforts are under way to improve the skill and reliability of
the P-Surge forecasts at longer lead times. For high-impact
events, these improvements will provide additional time for
emergency managers and the public to prepare for the ap-
proaching hazards and deal with evacuations. One avenue for
improvement is to incorporate dynamic uncertainty informa-
tion when generating the P-Surge ensemble. This information
could be used directly to generate the ensemble, or in a hybrid
manner similar to that described by DeMaria et al. (2013),
where the degree of uncertainty in the current forecast deter-
mines which subset of the historical NHC OFCL error distri-
bution to sample. This would allow computational resources
to be focused on input parameters (e.g., storm intensity) with
greater uncertainty.

Additionally, enhancements are needed so the outer region
of the input wind profile can be adjusted independently of the
RMW, and to enable SLOSH to represent storms that have
an asymmetric wind structure. At present, the parametric
wind profile used by SLOSH is not able to account for wind
asymmetries apart from those related to a storm’s forward
motion, and the RMW regression forecasts often struggle
with these types of storms, which typically occur during the
early or late part of the hurricane season. For storms with
an asymmetric wind structure, the SSU typically relies on
the guidance from the Probabilistic Extratropical Storm Surge
(P-ETSS) model (https://vlab.noaa.gov/web/mdl/petss; Liu and
Taylor 2020), which uses input from the North American
Ensemble Forecast System (NAEFS; Zhu et al. 2012).

Other avenues for potential improvement include imple-
menting some of the newer SLOSH model grids in P-Surge,
which cover a larger geographic extent than their predeces-
sors and often have improved grid spacing in critical areas.
Larger grids have been shown to improve the representation
of large-scale (nonlocal) processes (e.g., geostrophic currents)
(Blain et al. 1994; Kerr et al. 2013). There is also work under
way to couple the SLOSH model to a simplified wave model.
Accounting for waves is especially important for locations
that lack a broad continental shelf (Joyce et al. 2019), such as
Puerto Rico, the Virgin Islands, and southeast Florida. To in-
corporate either the wave model or newer SLOSH model
grids into P-Surge, code optimization is needed to ensure the
P-Surge forecasts are completed within the operational time
window available on NOAA’s supercomputer. In addition,
testing is under way to incorporate nonuniform bottom slip
coefficients (Manning’s n values) (e.g., Zhang et al. 2012).
This should provide more realistic surge values near the coast
and limit the extent to which flooding from surge occurs in-
land, which is sometimes overpredicted in the current version.
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