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1. INTRODUCTION1 
 

The National Weather Service’s (NWS) 
Meteorological Development Laboratory (MDL) 
implemented the Extra-Tropical Storm Surge 
(ETSS) model in 1995 (Kim et al. 1996) and 
Probabilistic Extra Tropical Storm Surge (P-ETSS) 
model in 2017 (Liu and Taylor 2018).  In 2000, MDL 
also implemented a station bias adjustment post-
processing methodology for ETSS to statistically 
account for components such as sea level rise, 
waves, river flooding, and model error.  More 
recently, MDL enhanced P-ETSS by using the 
42-member North American Ensemble Forecast 
System (NAEFS) instead of the 21-member Global 
Ensemble Forecast System (GEFS).  Additionally, 
a station bias post-processing methodology, similar 
to the one in ETSS, was applied to P-ETSS (Liu et 
al. 2019).  These enhancements are scheduled to 
be implemented in 2020. 

 
However, a gap in skill still exists between the 

NWS probabilistic guidance for tropical and extra 
tropical storms.  This is because Probabilistic 
tropical cyclone storm Surge (P-Surge) (Taylor and 
Glahn 2008) uses approximately 630 ensemble 
wind members, which is fifteen times more than the 
42 ensemble members within the NAEFS-based 
P-ETSS model.  To increase the spread of the 
P-ETSS results, MDL has worked to incorporate the 
European Centre for Medium-Range Weather 
Forecasts 51-member Ensemble Prediction 
System (ECMWF-EPS) into the P-ETSS model. 

 
Additionally, P-ETSS does not account for 
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model bias, nor water level components such as 
sea level rise, waves, and river flooding.  As 
mentioned, MDL addressed this in 2019 by 
importing ETSS’ station based post-processing 
methodology into P-ETSS.  This enables recent 
observations to statistically account for those extra 
water level components.  However, while this post-
processing improves the station guidance, it 
doesn’t improve the inundation calculation done by 
the model.  In order to improve guidance over the 
whole grid, MDL has worked to statistically account 
for those components in a pre-processing stage 
through an initial water condition.  This was done by 
averaging the anomaly at all station observations 
within the model domain to estimate an initial water 
level.  

 
This paper describes the details of these two 

efforts and provides validation using historic events.  
Section 2 describes the improvements to P-ETSS.  
The motivations of doing these improvements are 
discussed in Section 3.  Section 4 lists the historic 
storms along with observations used to validate the 
P-ETSS results.  Section 5 presents the results.  
The paper concludes with a summary and 
discussion in Section 6. 

 
2. IMPROVEMENTS TO P-ETSS 
 

P-ETSS is a coastal inundation ensemble 
model forced by ensemble wind forcing systems.  
The P-ETSS system provides storm surge and 
overland inundation guidance four times a day 
based on surge and tide for all continental U.S and 
Alaska coastal areas.  It provides finer resolution 
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guidance along the East Coast and the Gulf of 
Mexico by nesting high resolution basins.  The 
current operational version (P-ETSS 1.0) is forced 
by the 3-hourly, 0.5-degree (55 km) GEFS, which 
has 21 ensemble members. 

 
The next version, P-ETSS 1.1, scheduled to be 

implemented in October 2020, increases the 
number of ensemble members via the 42 member 
NAEFS.  Additionally, the East Coast basin was 
expanded to cover Puerto Rico and the Virgin 
Islands in anticipation of future wave coupling within 
the model.  The Gulf of Mexico basin was also 
expanded to cover the entire Gulf of Mexico and 
parts of the Yucatan Peninsula, which should allow 
P-ETSS to better model phenomena that come 
from outside the coastal area of interest (e.g. 
forerunner surge or reflection of waves off the 
Mexican coastline).  P-ETSS 1.1 also incorporated 
a station based bias correction post-processing 
stage. 

 
The latest efforts to improve P-ETSS are listed 

as green colored text in Table 1.  The first 
improvement listed in the table is to increase the 
number of ensemble members from 42 to 93 by 
including the 51 ensemble members from the 
ECMWF-EPS.  This is planned to be part of 

P-ETSS 1.2 which is scheduled to be implemented 
in 2022.  The second improvement in Table 1 is to 
add a pre-processing stage to estimate an initial 
water condition.  This is planned to be part of 
P-ETSS 1.1. 

 
3. MOTIVATIONS  
 
3.1 Include ECMWF-EPS 
 

To reduce the threat to life and property, it is 
important that NWS forecasters and emergency 
managers receive highly reliable wind and storm 
surge guidance.  However, wind forecasts now and 
in the near future have considerable uncertainty.  A 
recent example is Hurricane Florence, which made 
landfall as a Category 1 hurricane near Wrightsville 
Beach, NC early on 14 September 2018.   

 
Figure 1 shows the Hurricane Florence 

Advisory 47 ensemble forecast tracks from the 
GEFS (blue) and ECMWF-EPS (green) roughly 3 
days before landfall.  The GEFS indicated that 
Hurricane Florence would make landfall 
somewhere in the middle of North Carolina’s outer 
banks, whereas the ECMWF-EPS indicated it 
would make landfall on the northern part of South 
Carolina’s coastal shore.  While this particular 

Table 1. The current status and plans for P-ETSS. Green text indicates a feature that is discussed in this 
paper.  
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ECMWF-EPS forecast is better than the GEFS 
forecast in terms of where landfall occurred, neither 
ensemble system alone provided a wide enough 
spread to capture the uncertainty.  Instead, to best 
capture the uncertainty, both sets of tracks should 
be combined together. 

 

 
 

To see the impact on P-ETSS of this type of 
disparity in forecasts, three runs were made with 
Advisory 47: 1) used the 42-member NAEFS for 
forcing; 2) used the 51-member ECMWF-EPS for 
forcing, and 3) used both the NAEFS and 
ECMWF-EPS (93 members) for forcing.  The 
results at Duck-Pier, NC (NOS CO-OPS id 
8651370) are shown in Fig. 2.  Duck-Pier, NC is 
located at the northern part of North Carolina’s 
outer banks.  The results from using the NAEFS as 
forcing (top panel) show over forecasting of the 
ensemble mean but a reasonable ensemble 
spread.  The results from using the ECWMF-EPS 
as forcing (middle panel) show that the ensemble 
mean has a good agreement with observations but 
with a small ensemble spread.  The results from 
using both NAEFS and ECMWF-EPS as forcing 
(bottom panel) show both a good ensemble mean 
and a reasonable ensemble spread. 

 
The results from this particular Advisory for 

Hurricane Florence clearly show that including 
ECMWF-EPS is beneficial.  To show that this 
conclusion is robust, a quantitative analysis on 

impacted stations using retrospective model runs 
from four recent historical hurricane cases is done 
in Section 4.  
 

 
 
3.2 Initial Water Condition Addition 

 
As P-ETSS does not account for model bias, 

nor water level components such as sea level rise, 
waves, and river flooding; an “anomaly” in the 
model guidance is unavoidable.  The “anomaly” is 
defined as: Anomaly = Observation – Tide – Surge.  
A good example of such an anomaly is given in  
Fig. 3, which shows P-ETSS guidance without an 
initial water condition for 0600 UTC on 
10 December 2019 at Cedar Key, FL (NOS CO-
OPS id 8727520).  It shows there is an 
approximately 1-foot water level anomaly (green 
line), which is the average anomaly from the 
previous five days of model runs.  To resolve this, a 
station based post-processing methodology was 
implemented to statistically account for those 
components based on recent observations. 

 

Figure 1. Hurricane Florence track forecast 
from Advisory 47. Blue represents the GEFS 
forecast tracks and green represents the 
ECMWF-EPS forecast tracks.  

Figure 2. P-ETSS results from Advisory 47 at 
Duck Pier, NC (NOS CO-OPS id 8727520).  
The top panel is NAEFS-based P-ETSS, the 
middle panel is ECMWF-EPS-based, and the 
bottom panel is based on both NAEFS and 
ECMWF-EPS.  
 

NAEFS 

ECMWF-EPS 

Both 
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Unfortunately, this doesn’t help the model 
guidance at grid cells that are not coincident with 
station observations, nor does it help the inundation 
guidance since the statistical anomaly calculation is 
done after the inundation calculations.  To improve 
the model results over the whole grid and the 
inundation guidance, a pre-processing stage based 
on station anomalies needs to be introduced as an 
initial water condition before the model run. 
 
4. HISTORICAL STORMS 
 

To evaluate the impact on P-ETSS of including 
ECMWF-EPS and adding an initial water condition, 
retrospective model runs were made for four storms 
that occurred during the past two years.  Table 2 
lists the four storms chosen to evaluate the P-ETSS 
model, which includes: Hurricanes Alberto and 
Florence in 2018, and Hurricanes Barry and Doran 
in 2019.  Figure 4 shows NHC’s hindcast tracks for 
these four storms along with the stations used to 
evaluate the model performance. 

 
Table 2. The storms used to validate P-ETSS 
improvements.  

 

 
 
 
 
 

Figure 3. P-ETSS without initial water condition guidance at Cedar Key, FL for 0600 UTC on 10 
December 2019.  
 

Figure 4. NHC’s hindcast tracks for Hurricane 
Alberto-2018, Florence-2018, Barry-2019, and 
Dorian-2019, along with station locations. 
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5. RESULTS 
 

5.1 ECMWF-EPS  
 

P-ETSS ensemble mean skill scores for 12-, 
24-, 36-, 48-, 60-, 72-, 84-, and 96-h projections 
were evaluated against the observations from tide 
gauges during a specific 96-h time window.  The 
reason a 96-h time window was selected was to 
focus on when the water levels were most 
significantly impacted.  The 96-h time series was 
created by splicing together 6-h slices from 
consecutive model runs.  For example, the 24-h 
projection window spliced hours 19 to 24 from one 
model run to hours 19 to 24 from the next 
consecutive model run.  This results in a relatively 
constant projection thereby reducing the impact of 
errors within different projections on the 
assessment.  So the 24-h projection requires 16 
consecutive model runs, and the 12-h projection 
requires 2 additional earlier model runs.  The result 
is all 8 projections require a total of 30 consecutive 
model runs. 

 
Model performance was then assessed based 

on the average of the following scores over the 
various tide gauge observation time frames: 
 

1) Root Mean Squared Error (RMSE), 
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2) Peak Absolute Error (PAE), 

 
))max()(max( ,, idelmoiobs XXabsPAE −=  

 
To assess how well it captures the uncertainty 

of the forecast, we calculated another skill score: 
 
3) Coverage of Observations by forecast area 

of Uncertainty (COU), 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛

96
∗ 100  

 
where n was the total number of hourly 
observations that fall inside the area of P-ETSS 
model uncertainty during the 96-h time frame. 

 
The average RMSE and PAE for the tide gauge 

observation time frames for the 12-, 24-, 36-, 48-, 
60-, 72-, 84-, and 96-h projections are shown in 
Fig. 5.  The results show that for three of the four 
cases, the average RMSE scores for ECMWF-
EPS-based P-ETSS were better than the NAEFS-
based P-ETSS for most projections.  The exception 
case was Hurricane Dorian, where the average 
RMSE scores for the NAEFS-based P-ETSS were 
better for the 12-, 24-, 36-, 48-, and 60-h 
projections.  The ECMWF-EPS-based P-ETSS had 
a better average PAE in all four cases for almost all 
projection hours.  The combined ECMWF-EPS- 
and NAEFS-based P-ETSS always performed well 
in terms of RMSE and PAE. 

 
The average COU score versus projection 

hours for the four storms are shown in Fig. 6.  It 
indicates that the COU score from ECMWF-EPS-
based P-ETSS is the smallest for almost all 
projections for the four storm events.  The COU 
score for the NAEFS-based P-ETSS was better 
than the combined NAEFS- and ECMWF-EPS-
based P-ETSS for Hurricanes Alberto and Barry.  
The opposite was true for Hurricanes Florence and 
Dorian.  Overall the COU score was still far from 
80%, which indicates there were still a significant 
number of times where the observations were not 
within the estimated area of uncertainty.  This 
implies that more ensemble members, or a more 
diverse set of ensemble members, are needed to 
capture the uncertainty.  Overall, the combined 
ECMWF-EPS- and NAEFS-based P-ETSS is the 
best choice. 

 
5.2 Initial Water Condition 
 

The initial water condition methodology 
developed for P-ETSS and the deterministic ETSS 
model sets the initial water value to the mean 
anomaly of all stations within a given basin.  Each 
cycle, an updated mean anomaly is computed with 
any new observation data.  This is then added to 
the initial water level from the previous cycle and 
the model is run.  Through this iterative process, the 
model adjusts to the best solution based on the 
updated observations and the resulting mean 
anomaly. 
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A significant challenge with this methodology is 
determining the time periods over which to 
calculate the mean anomaly.  Since the last cycle’s 
initial water level is part of the initial water condition 
for the current run, in theory, the updated mean 
anomaly should only have to cover the most recent 
model cycle (6 hours).  That way it would avoid 
double counting the anomaly.  In practice, 
calculating the anomaly over a 6-h period is too 

short as it doesn’t cover a full tide cycle, and doing 
so would result in a chaotic oscillation between 
cycle results at some stations.  The likely reason for 
this is that there is a tidal phase shift at the station, 
due to incorrect tidal constituents or a non-linear 
interaction between the tide and surge.  The phase 
shift results in a “fake” positive adjustment in the 
first 6 hours followed by a compensating negative 
adjustment in the second 6 hours. 

Figure 5. The left column is average RMSE versus projection hour.  The right column is average Peak 
Error versus projection hour.  From top to bottom the rows are: Hurricane Alberto, Florence, Barry and 
Dorian.  The solid blue line represents the P-ETSS results from the NAEFS-based run, the dotted blue 
line represents the results from the ECMWF-EPS-based run, and the dotted red line represents the 
result from using both NAEFS and ECMWF-EPS.  
 

PeakErr  vs Proj Hrs RMSE vs Proj Hrs 
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To determine the best time range for the 

anomaly calculation, four P-ETSS model runs were 
made with Hurricane Barry from 2019 (Advisory 
10).  These runs compared the case of no initial 
water condition with initial water conditions based 
on the mean anomaly calculated over 12, 18, and 
24 hours.  This is depicted in Fig. 7.  The RMSE and 
PAE scores were used to evaluate the performance 
of P-ETSS.  The difference in this section (versus 
the last section) being a focus on individual stations 
versus averages over all stations. 

 
The RMSE and PAE for each of the 9 impacted 

stations are shown in Tables 3a and 3b.  The RMSE 
and PAE show significant improvements in P-ETSS 

with initial water condition for almost all stations.  
The performance of P-ETSS was comparable when 
the mean anomaly was calculated over 12, 18, or 
24 hours. 
 

The same experiment was done with Hurricane 
Dorian from 2019 (Advisory 38), except we dropped 
the mean anomaly over 18 hours option.  The 
RMSE and PAE for each of the 14 impacted 
stations are shown in Tables 3c and 3d.  The results 
support a similar conclusion as with Hurricane 
Barry from 2019, with the notable exception of 
Ocean City Inlet, MD (NOS CO-OPS id 8570283) 
where both the RMSE and PAE preformed best 
with no initial water condition. 

Figure 7. The process to create the initial water condition. 

Figure 6. COU for P-ETSS per projection hour for runs based on NAEFS (blue), ECMWF-EPS 
(green), and both (red) for a) Hurricane Alberto, b) Hurricane Florence, c) Hurricane Barry, and d) 

  

a) b) 

c) d) 
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Table 3a) RMSE at stations for Hurricane Barry with no anomaly, or calculated over 12-, 18-, or 24-h. 
The green color indicates the run with lowest score. 
stn LA1 LA2 LA3 LA4 LA5 LA6 MS1 MS2 AL1 
No 0.50 0.78 1.20 1.63 0.70 1.04 0.55 0.72 1.00 
12-h 0.50 0.35 0.42 0.83 0.32 0.50 0.59 0.25 0.16 
18-h 0.56 0.43 0.31 0.72 0.38 0.48 0.69 0.27 0.22 
24-h 0.54 0.40 0.35 0.75 0.36 0.55 0.66 0.22 0.29 

 
 Table 3b) Same as Table 3a but for PAE. 

Stn LA1 LA2 LA3 LA4 LA5 LA6 MS1 MS2 AL1 
No 0.83 1.59 1.63 1.91 1.13 1.87 0.51 0.79 1.12 
12-h 0.23 0.69 0.73 1.01 0.43 1.17 0.39 0.11 0.22 
18-h 0.23 0.59 0.63 0.91 0.23 1.07 0.49 0.11 0.32 
24-h 0.23 0.59 0.73 1.10 0.33 1.27 0.49 0.01 0.42 

 
 Table 3c) RMSE at stations for Hurricane Dorian with no anomaly, or calculated over 12-, or 24-h. The 
green color indicates the run with lowest score. 

stn SC1 GA1 NC1 NC2 NC3 VA1 VA2 VA3 MD1 NJ1 NJ2 N3J NY1 NY2 
No 0.92 0.91 0.88 1.14 0.64 0.62 0.76 0.72 0.81 0.63 0.71 0.67 0.60 0.59 
12-h 0.91 1.04 0.49 0.94 0.38 0.46 0.23 0.51 0.92 0.51 0.56 0.49 0.48 0.49 
24-h 0.90 1.03 0.49 0.94 0.41 0.50 0.26 0.54 0.95 0.58 0.64 0.54 0.55 0.56 

 
 Table 3d) Same as Table 3c but for PAE. 

stn SC1 GA1 NC1 NC2 NC3 VA1 VA2 VA3 MD1 NJ1 NJ2 NJ3 NY1 NY2 
No 1.77 1.87 1.33 3.62 0.83 1.02 1.04 0.76 1.28 0.51 0.50 0.31 0.12 0.54 
12-h 0.67 0.87 0.63 2.82 0.03 0.02 0.14 0.04 2.18 0.39 1.30 1.11 0.92 0.26 
24-h 0.67 0.97 0.53 2.72 0.08 0.02 0.14 0.04 2.28 0.49 1.50 1.21 1.02 0.36 

After reviewing the station locations, Ocean 
City Inlet (station MD1 in the above tables) was the 
only station located along the open ocean.  All the 
other stations are located inside bays or inlets.  This 
meant that the model behaved differently at Ocean 
City Inlet, which in turn meant that there was a 
higher chance that the model would over forecast 
at Ocean City Inlet station and under forecast 
elsewhere (or vice versa).  In that case, the initial 
water condition created by the mean anomaly from 
all stations would increase the water level at Ocean 

City Inlet station, thereby creating an over-forecast.  
To avoid this, we will need to develop a 
methodology to generate spatially varying initial 
water conditions for the ETSS and P-ETSS models. 

 
The comparison of the time periods showed 

that the 12-h period had a slight improvement.  It is 
also the closest time period to the idealized case 
(6-h period) that avoids the chaotic oscillation.  So, 
the 12-h period was selected as the time period 
over which the mean anomaly is calculated. 
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Having chosen the time period of the initial 
water condition calculation, P-ETSS was run for the 
same case as in Fig. 3, but with an initial water 
condition.  The guidance at Cedar Key, FL is shown 
in Fig. 9.  Note that the 1-foot water level anomaly 
from Fig. 3 has disappeared.  This means the mean 
model anomaly over the previous 5 days is zero.  In 
other words, the model can now see the initial water 
condition and it can compute a more realistic field 
of inundation. 
 
6. SUMMARY AND DISCUSSION 
 

For all of the storm events, incorporating 
ECMWF-EPS provided better guidance for the 12- 
to 96-h forecast projections.  Specifically, the 
ensemble mean of P-ETSS when forced by both 
NAEFS and ECMWF-EPS showed significant 
improvements over the version forced by NAEFS 
only.  In terms of coverage of the uncertainty, the 
version forced by both NAEFS and ECMWF-EPS 
showed improvements in a large number of the 
storm events.  However, the specific COU score per 
projection for the 4 storm events is still far from the 
goal of 80% for certain projection hours.  More 
members will need to be added to expand its 
estimate of uncertainty, which will not only improve 
the COU, but also improve the performance of the 
ensemble mean.  This improvement is planned to 
be implemented in P-ETSS 1.2. 

 
Additionally, this paper described adding an 

initial water condition pre-processing stage to the 

P-ETSS model, which will be implemented in 
P-ETSS1.1.  This pre-processing stage provides an 
efficient way to account for various biases such as 
mean sea level increase, omitted physical terms, 
and model errors.  For most of the stations, adding 
the initial water condition to the pre-processing 
stage showed significant improvements over not 
doing so.  Adding the pre-processing stage will also 
improve the inundation calculation as the model will 
be able to react to the extra water.  Post-processing 
will still be done at stations, to adjust to local water 
level observations, but the adjustment will be 
smaller.   
 

In the long term, MDL plans to enable ETSS 
and P-ETSS to use the parallel SLOSH version 
(Taylor and Liu 2020).  That will enable ETSS and 
P-ETSS to utilize the updated (larger and finer) 
basins for South Florida, New Orleans, Texas, New 
York, etc.  Finally, MDL plans to create finer basins 
to nest within Alaska’s Bering, Beaufort, and 
Chukchi seas basin. 
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